Tanc 函數 定義如下[1] Tanc ( z ) = tan ( z ) z {\displaystyle \operatorname {Tanc} (z)={\frac {\tan(z)}{z}}} Tanc 2D plot Tanc'(z) 2D plot Tanc integral 2D plot Tanc integral 3D plot 虛域虛部 Im ( tan ( x + i y ) x + i y ) {\displaystyle \operatorname {Im} \left({\frac {\tan(x+iy)}{x+iy}}\right)} 虛域實部 Re ( tan ( x + i y ) x + i y ) {\displaystyle \operatorname {Re} \left({\frac {\tan \left(x+iy\right)}{x+iy}}\right)} 絕對值 | tan ( x + i y ) x + i y | {\displaystyle \left|{\frac {\tan(x+iy)}{x+iy}}\right|} 一階導數 1 − tan ( z ) ) 2 z − tan ( z ) z 2 {\displaystyle {\frac {1-\tan(z))^{2}}{z}}-{\frac {\tan(z)}{z^{2}}}} 導數實部 − Re ( − 1 − ( tan ( x + i y ) ) 2 x + i y + tan ( x + i y ) ( x + i y ) 2 ) {\displaystyle -\operatorname {Re} \left(-{\frac {1-(\tan(x+iy))^{2}}{x+iy}}+{\frac {\tan(x+iy)}{(x+iy)^{2}}}\right)} 導數虛部 − Im ( − 1 − ( tan ( x + i y ) ) 2 x + i y + tan ( x + i y ) ( x + i y ) 2 ) {\displaystyle -\operatorname {Im} \left(-{\frac {1-(\tan(x+iy))^{2}}{x+iy}}+{\frac {\tan(x+iy)}{(x+iy)^{2}}}\right)} 導數絕對值 | − 1 − ( tan ( x + i y ) ) 2 x + i y + tan ( x + i y ) ( x + i y ) 2 | {\displaystyle \left|-{\frac {1-(\tan(x+iy))^{2}}{x+iy}}+{\frac {\tan(x+iy)}{(x+iy)^{2}}}\right|} Remove ads與其他特殊函數的關係 Tanc ( z ) = 2 i K u m m e r M ( 1 , 2 , 2 i z ) ( 2 z + π ) K u m m e r M ( 1 , 2 , i ( 2 z + π ) ) {\displaystyle \operatorname {Tanc} (z)={\frac {2\,i{{\rm {KummerM}}\left(1,\,2,\,2\,iz\right)}}{\left(2\,z+\pi \right){{\rm {KummerM}}\left(1,\,2,\,i\left(2\,z+\pi \right)\right)}}}} Tanc ( z ) = 2 i H e u n B ( 2 , 0 , 0 , 0 , 2 i z ) ( 2 z + π ) H e u n B ( 2 , 0 , 0 , 0 , 2 1 / 2 i ( 2 z + π ) ) {\displaystyle \operatorname {Tanc} (z)={\frac {2\,i{\it {HeunB}}\left(2,0,0,0,{\sqrt {2}}{\sqrt {iz}}\right)}{\left(2\,z+\pi \right){\it {HeunB}}\left(2,0,0,0,{\sqrt {2}}{\sqrt {1/2\,i\left(2\,z+\pi \right)}}\right)}}} Tanc ( z ) = W h i t t a k e r M ( 0 , 1 / 2 , 2 i z ) W h i t t a k e r M ( 0 , 1 / 2 , i ( 2 z + π ) ) z {\displaystyle \operatorname {Tanc} (z)={\frac {{\rm {WhittakerM}}\left(0,\,1/2,\,2\,iz\right)}{{{\rm {WhittakerM}}\left(0,\,1/2,\,i\left(2\,z+\pi \right)\right)}z}}} Remove ads級數展開 Tanc z ≈ ( 1 + 1 3 z 2 + 2 15 z 4 + 17 315 z 6 + 62 2835 z 8 + 1382 155925 z 10 + 21844 6081075 z 12 + 929569 638512875 z 14 + O ( z 16 ) ) {\displaystyle \operatorname {Tanc} z\approx (1+{\frac {1}{3}}{z}^{2}+{\frac {2}{15}}{z}^{4}+{\frac {17}{315}}{z}^{6}+{\frac {62}{2835}}{z}^{8}+{\frac {1382}{155925}}{z}^{10}+{\frac {21844}{6081075}}{z}^{12}+{\frac {929569}{638512875}}{z}^{14}+O\left({z}^{16}\right))} ∫ 0 z tan ( x ) x d x = ( z + 1 9 z 3 + 2 75 z 5 + 17 2205 z 7 + 62 25515 z 9 + 1382 1715175 z 11 + 21844 79053975 z 13 + 929569 9577693125 z 15 + O ( z 17 ) ) {\displaystyle \int _{0}^{z}\!{\frac {\tan \left(x\right)}{x}}{dx}=(z+{\frac {1}{9}}{z}^{3}+{\frac {2}{75}}{z}^{5}+{\frac {17}{2205}}{z}^{7}+{\frac {62}{25515}}{z}^{9}+{\frac {1382}{1715175}}{z}^{11}+{\frac {21844}{79053975}}{z}^{13}+{\frac {929569}{9577693125}}{z}^{15}+O\left({z}^{17}\right))} Remove ads圖集 Tanc abs complex 3D Tanc Im complex 3D plot Tanc Re complex 3D plot Tanc'(z) Im complex 3D plot Tanc'(z) Re complex 3D plot Tanc'(z) abs complex 3D plot Tanc abs plot Tanc Im plot Tanc Re plot Tanc'(z) Im plot Tanc'(z) abs plot Tanc'(z) Re plot Tanc integral abs plot Tanc integral Im plot Tanc integral Re plot Tanc abs complex 3D plot Tanc Im complex 3D plot Tanc Re complex 3D plot 參看 Sinhc函數 Coshc函數 Tanhc函數 雙曲正弦積分函數 參考文獻Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads