热门问题
时间线
聊天
视角

巴尼斯G函數

来自维基百科,自由的百科全书

Remove ads
Remove ads

巴尼斯G函數超級階乘函數在複數上的擴展。它與Γ函數K函數以及格萊舍常數(Glaisher constant)有關。以數學家歐尼斯特·巴尼斯(Ernest William Barnes)的名字命名。[1]

巴尼斯G函數可以通用魏爾施特拉斯分解定理的形式定義為:

其中,γ表示歐拉-馬歇羅尼常數。

Remove ads

差分方程、函數方程與特殊值

巴尼斯G函數滿足差分方程

特殊地,G(1)=1. 從此方程可推出G取整數自變量時有:

因此,

其中,表示Γ函數表示K函數

另外,在滿足條件時,差分方程唯一確定一個G函數。[2].

由G函數的差分方程和Γ函數的函數方程可以得到(由Hermann Kinkelin提出):

Remove ads

乘法公式

與Γ函數一樣,G函數也有其乘法公式:

其中K是一個常數,定義為:

其中表示黎曼ζ函數導函數則表示為格萊舍常數。

漸近展開為(由巴尼斯提出):

其中為伯努利數,為格萊舍常數。(需要注意的是,在巴尼斯的時代,伯努利數習慣寫成。)

Remove ads

相關條目

參考

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads