热门问题
时间线
聊天
视角

異源生物學

来自维基百科,自由的百科全书

Remove ads

異源生物學(英語:Xenobiology;簡稱XB)是合成生物學的一個分支,是合成和生物操縱生物學器件和系統的研究。異源生物學源於Xenos(希臘語)這個名詞,意思是「陌生人,客人」。因而XB描述的是一種科學對其不熟悉或尚未熟悉、在自然界中也不存在的生物學形式。在實踐中,它描述了新型的生命系統和生物化學,不同於經典的DNA-RNA‐20個氨基酸體系(見分子生物學中的經典中心法則)。例如, XB探索的不是DNA或RNA,而是作為信息載體,定名為異源核酸(XNA)的核酸類似物。 [1]它還側重於遺傳密碼的擴展 [2]以及非蛋白氨基酸向蛋白質的摻入。 [3]

異源, 外源 和外星之間的差異

外星指的是外星球而外源指的是外面。外太空和天體生物學都是尋找宇宙中的自然進化的生命,大多是在恆星系統的宜居帶中的其他行星。相對於天體生物學家所關心的是檢測和(假設性地)分析存在於宇宙其他地方的生命, 異源生物學試圖設計的地球上的生命形式具有不同的生物化學或不同的遺傳密碼。 [4]

異源生物學的目標

  • 異源生物學擁有揭示生物學和生命起源的基本知識的潛力。為了更好地理解生命的起源,就必須知道為什麼生命從一個早期RNA世界向DNA - RNA-蛋白質體系進化及其通用的遺傳密碼 。 [5]它是一次進化的「意外」或是排除了一些其他類型的生物化學形式?通過測試其他的生化「原始湯」 ,它有望更好地理解形成已知生命的原理。
  • 異源生物學是通過發展具有新能力的工業生產體系的方法增強生物聚合物工程和(工程菌的)抗病性。在所有生物中遺傳密碼編碼用於蛋白質生物合成的有20種經典氨基酸。在罕見的情況下,特殊氨基酸如硒代半胱氨酸,吡咯賴氨酸或硒代蛋氨酸可通過翻譯,結合到一些生物體的蛋白質中。 [6]通過使用額外的氨基酸的700多個分子的生化分析,可以看到蛋白質性質被改變,產生了更有效的催化的或材料的功能。例如,歐盟資助的項目METACODE,力圖把代謝衍生物(到目前為止,在活的生物體未知的有用的催化功能)結合入細菌細胞。XB可以提高生產過程的另一個原因,在於能夠降低病毒噬菌體感染的風險,因為XB細胞將不再是合適的宿主細胞、讓它們變得更有抗性(一個稱為交換遏制的方法)。
  • 異源生物學提供了一個可設計的 「基因防火牆」 ,一種新型的生物防護系統,它可以幫助加強和豐富目前的生物遏制方法的選項。傳統基因工程和生物技術的其中一個關注是向環境的[水平基因轉移]及其可能對人類健康的風險。在XB中的一個主要構思是設計不同的遺傳密碼和生化組成從而使水平基因轉移成為不再可能。此外替代生物化學還將允許新的合成營養缺陷型。這一構思是創建一個正交生物系統,與自然遺傳系統不兼容。 [7]
Remove ads

科學的途徑

在異源生物學,其目的是設計和建造,在一個或多個基本水平上與他們的自然同類不同的生物系統。理想的情況是這些對自然界來說是新的生物將在每一個可能的生化方面表現出非常不同的遺傳密碼。長期的目標是構建一個細胞,這個細胞將不用DNA,而用異源核酸( XNA )、用不同的鹼基對、非經典的氨基酸和改變的遺傳密碼組成的信息聚合物中儲存其遺傳信息。到目前為止,已經構建的細胞只包含了其中的一兩個特性。

異源核酸( XNA )

起初,這項對DNA替代方式的研究主要由以下兩個問題驅動:地球上的生命是如何進化的,以及為什麼(化學)進化選擇了RNA和DNA而不是其他可能的核酸和結構 。[8]多樣化核酸化學結構的系統實驗研究已經生成了承載信息的完全新的生物聚合物。到目前為止,已經合成了許多用新的化學骨架或經修飾的DNA的XNAs [9][10][11][12],例如:己糖核酸( HNA); 蘇糖核酸(TNA),[13][乙二醇核酸(GNA),環己烯基的核酸(CeNA)。 [14]含有3 個 HNA密碼子的 XNA在質粒中的整合,已經在2003年完成。 [15]這XNA用於在體內 (大腸桿菌)作為DNA合成的模板。這個研究使用二進制( G / T)遺傳元件和兩個非DNA鹼基( Hx / U) ,已被擴展用於CeNA ,GNA對自然生物系統而言似乎對太過陌生,不能用做DNA合成的模板。 [16]雖然有較多的限制,含有擴展鹼基的DNA骨架還是可能被翻譯成天然的DNA 。[17]

Remove ads

擴展的遺傳字母表

XNAs有修改過的骨架,而其它實驗的目標是用非自然的鹼基替換或擴展DNA的遺傳字母表。例如,設計了含有六種鹼基的 DNA(而不是四種標準鹼基 A、T、G 和 C),這六種鹼基是 A、T、G、C 以及兩個新的鹼基 P 和 Z(其中 Z 代表 6-氨基-5-硝基-3-(l'-p-D-2'-脫氧呋喃糖基)-2(1H)-嘧啶酮,P 代表 2-氨基-8-(1-β-D-2'-脫氧呋喃糖基)咪唑[1,2-a]-1,3,5-三嗪-4(8H))。 [18][19][20]在一項系統研究中,Leconte 等人測試了 60 種候選鹼基(可能形成 3600 種鹼基對)以確定其是否可用於 DNA 的潛在整合。[21]

新型聚合酶

天然聚合酶既不能識別XNA ,也不能識別非自然的鹼基。其中一個主要的挑戰是要找到或創建新的聚合酶,將能夠複製這些對自然來說是新的複合物。在某種情況下的HIV逆轉錄酶的修飾的變體被認為是能夠PCR擴增含有第三型的鹼基對的寡核苷酸 。 [22][23]Pinheiro 等人( 2012 )證明了聚合酶進化和設計的方法,成功實現了自然界中不存在的核酸結構[異種核酸]的六個其他遺傳聚合物的遺傳信息的存儲和修復(少於100個基點長度)。[24]

遺傳密碼工程

異源生物學的目標之一是重寫通用遺傳密碼 。改變代碼的最有效果的方法是重新分配較少使用甚至從不使用的密碼子。 [25]在理想情況下,遺傳密碼通過增加一個密碼子而得到擴展,從而從其舊功能中解放出來,並完全重新分配給非標準氨基酸(ncAA)(「密碼子擴展」)。由於這些方法實施起來相當費力,可以採用一些捷徑(「密碼子工程」),例如,在特定氨基酸營養缺陷型的細菌中,和在實驗的某一時刻不供給其營養缺陷的常規氨基酸而是其結構類似物。在這種情況下,天然蛋白質中的常規氨基酸殘基被 ncAA 取代。甚至可以在同一蛋白質中插入多種不同的 ncAA。最後,20 種常規氨基酸的譜系不僅可以擴展,還可以減少到 19 種。 [26]。通過重新分配轉運 RNA(tRNA)/氨酰-tRNA 合成酶對,可以改變密碼子的特異性。擁有此類氨酰-tRNA 合成酶的細胞因此能夠讀取對現有基因表達機制沒有意義的mRNA序列。 [27]替代密碼子: 氨酰合成酶對可能會導致非標準氨基酸在蛋白質中體內摻入。 [28][29]在過去,重新分配密碼子的規模有限。然而,在2013年,哈佛大學的Farren Isaacs 和 George Church用同義密碼子TAA置換了大腸桿菌基因組中的所有314 個TAG終止密碼子,從而表明大量的取代鹼基可合成更高度(修飾)而不致死的菌株。 [30]全基因組密碼子置換成功之後,作者繼續並取得了13個密碼子的重新編程整個基因組,直接影響42 個必需基因。 [31]

更加激進的遺傳密碼改變是在無細胞體系中 (Sisido)[32]以及在細菌中 (Schultz),[33]三聯體密碼子改變為四聯體甚至五聯體密碼子。最後,非天然型鹼基對可用來在蛋白質中導引入新的氨基酸。 [34]

Remove ads

定向進化

由XNA替代DNA的目的也可以通過另一途徑到達,即通過設計環境,而不是遺傳模塊。這一途徑已被Marliere和Mutzel成功地證明了,其製作的大腸桿菌菌株的DNA是由標準的A ,C和G鹼基組成,但合成的胸腺嘧啶類似物5 - 氯尿嘧啶代替了序列相應位置上的胸腺嘧啶(T)。因而將這些細胞的生長依賴於外部提供的5 - 氯尿嘧啶,但除此之外,它們的外形和功能看起來和正常大腸桿菌一樣。這種途徑獲得的細菌具備了防止與其他細菌的相互作用的兩個防火牆,其一是非天然化學物的營養缺陷,其二是包含了不能由其它生物體破譯的一種DNA形式。[35]

生物安全

異源生物學的系統旨在設計與自然生物正交的系統。 A類生物(仍是假設的),使用XNA [36]、不同的鹼基對、及聚合酶並具有改變的遺傳密碼,將很難能夠在基因水平上與自然的生命形式進行互動。因此,這些異源生物學的生物體代表一個基因飛地,不能與自然的細胞進行信息交換。 [37]改變細胞的遺傳機制導致交換遏制。類似於在IT信息處理,這種安全概念被稱為「遺傳防火牆」。 [4][38]遺傳防火牆的概念似乎克服了許多以前的生物安全系統的局限性。 [39][40]遺傳防火牆的理論概念的第一個實驗證據是在2013年實現與基因組重新編碼的生物( GRO)的構建。在這一GRO中,大腸桿菌中所有已知UAG終止密碼子都由UAA密碼子替換,這會允許刪除釋放因子1並允許重新分配UAG的翻譯功能。這個GRO對T7噬菌體的抗性提高從而顯示出改變的遺傳密碼能夠減少遺傳兼容性。 [41]但是,這種GRO仍然是與其自然的「母菌」非常相似,不能看作是一種遺傳防火牆。大量三聯密碼的功能重新分配能夠提供這樣一個遠景,可以獲取綜合了XNA 、新鹼基對、新的遺傳密碼等不能與自然生物交流元件的品系。雖然遺傳防火牆可以實現在新生物中納入交換遏制機制,新型生化系統仍需評估新毒素和異源性化學物質。 [42][43]

管理和監管問題

異源生物學可能挑戰監管框架,因為目前的遺傳修飾生物的法規和指令,不直接提及化學或基因組修飾的生物體。考慮到未來的幾年,真正的異源生物學生命不會出現,政策制定者確實有時間作好準備迎接即將到來的管理挑戰。自2012年,美國政策顧問、[44]歐洲的四個國家生物安全委員會[45]和歐洲分子生物學組織 [46]已經着手這個主題,將其設為一個發展中的管理問題。

參考文獻

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads