热门问题
时间线
聊天
视角
特洛伊波包
来自维基百科,自由的百科全书
Remove ads
特洛伊波包(英語:trojan wave packet )是非穩態且不擴散的波包 ,屬於由原子核和一個或多個電子波包所組成的人造系統,受到連續電磁場高度激發。


強烈的偏振電磁場會將電子波包控制住,或是說將其「捕獲」在特意選擇的軌道(能量殼層)中。[1][2] 波包名稱源自太陽–木星系統中的特洛伊小行星 。[3] 特洛伊小行星位於木星軌道上的拉格朗日平衡點L4和L5,圍繞著太陽運行。它們在此處相位鎖定,避免相互碰撞,而特洛伊波包的結合方式就類似於這種現象。
概念與研究
特洛伊波包的概念源自蓬勃發展的物理學領域,物理領域已經可以做到在原子層級上操縱原子和離子,造出可以控制原子的離子阱,進而使用離子阱來創造新的物質形態,包括離子液體、維格納晶體和玻色-愛因斯坦凝聚 。[4] 控制量子特性的能力是在現實生活中發展奈米元件(例如量子點和微晶片阱)應用的直接關鍵。2004年研究表明,造出一個實際上是單原子的阱,並操縱原子內部電子的行為是有可能的。 [5]
在2004年使用激發態鋰原子進行的實驗中,研究人員能夠將單顆電子定位在15000個軌道(900 ns)中的其中一個軌道上,既不會擴散,也不會色散。這種「經典原子」是透過微波場來合成的,藉由 "拴住 "電子,使其運動被相位鎖定在微波場內。這種獨特原子系統中的電子相位鎖定,就類似於上面所堤到的木星軌道的小行星相位鎖定。[6]
這個實驗所探討的技術是對一個早期問題的解決方案,這問題可追溯到1926年。當時的物理學家意識到,任何初始的局部波包都將不可避免地擴散到整個電子軌道,物理學家注意到「原子庫侖位能的波方程會產生色散」。到了1980年代,幾組研究人員證明了這一點。波包會在軌道上一路擴散開來,並與自己發生相干性干涉。近期透過諸如特洛伊波包等實驗所實現的創新是將波包局部化,亦即沒有發生擴散。該創新是應用了圓偏振電磁場,在微波頻率下與電子波包同步,故意讓電子波包保持在拉格朗日型軌道上。[7] [8]特洛伊波包實驗是建立在之前激發態鋰原子實驗的工作基礎上,實驗的原子對電場和磁場反應靈敏,衰變周期相對較長,而電子則出於各種意圖和目標,確實運行在經典軌道上。由於偏振微波場可以用來進行控制和響應,因此對電場和磁場的敏感度相當重要。[9]
Remove ads

下一個合乎邏輯的步驟是嘗試從單電子波包進展到多電子波包 。而雙電子波包已經在鋇原子中完成這兩個電子波包都是局域化的。但是它們最終在原子核附近碰撞,進而產生色散 。另一種技術採用了一對非色散電子,但其中一顆電子的軌道必須局部化且靠近原子核。這種非色散型雙電子特洛伊波包的演示改變了現況,而這些是單電子特洛伊波包的下一階段類比,專為類比激發氦原子而設計。[11] [12]
到2005年7月,帶有具相干性、穩定性的非色散型雙電子波包的原子已經被實作了出來。 它們可以是處於激發態的類氦原子或量子點氦(在固態應用中),也可以在原子(量子)尺度上類比於牛頓經典物理學的三體問題。同時,圓偏振電磁場和磁場使在氦原子或量子點氦(帶有雜質中心)的雙電子組態能夠穩定,且在廣闊的電磁波譜內都能維持穩定。因此,這種雙電子波包的組態被認為是真正的非色散性,比如,配置在受到束縛的二維空間量子點氦的電子。現今已經有了各式各樣的雙電子的特洛伊波包組態,而截至2005年,只有一個三維空間的配置。 [13] 在2012年進行了一項重要的實驗步驟,不僅以絕熱變化的頻率生成並鎖定特洛伊波包,也按照Kalinski和Eberly的預測對原子進行擴張。 [14]透過在絕熱斯塔克場(adiabatic Stark field)中的連續激發,可以在氦中產生雙電子朗繆爾特洛伊波包,先是在He+
上首次產生圓形單電子環,接著再將第二個電子置於類似的狀態 。[15]
Remove ads
參見
參考文獻
進一步閱讀
外部連結
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads