在平面幾何中,角平分線長公式是計算三角形內、外角平分線長度的公式。在三角形
中,
的內角平分線交對邊
於點
,外角平分線交直線
於點
,則三角形的內、外角平分線的長度為:


三角形的內、外角平分線
若記
邊長為
,
邊長為
,
邊長為
,記內角平分線
長為
,外角平分線
長為
,則三角形的內、外角平分線的長度可以表示為:


|


|
證明
三角形ABC以及關於角A的平分線
內角平分線長
作
的內角平分線交對邊
於點
。延長
至點
,使
。



得內角平分線長公式(i):[1][2][3]

外角平分線長
作
的外角平分線交直線
於點
。延長
至點
,使
。



得外角平分線長公式(i):[2]

推導
根據角平分線定理,有:[4]

|

|
代入式(i),得到角平分線長公式(ii):[5][3]

|

|
將餘弦公式代入式(ii),得到角平分線長公式(iii):

|

|
將半角公式代入式(iii),得到角平分線長公式(iv):[6]

|

|
與其他定理的關係
斯圖爾特定理
角平分線長公式是斯圖爾特定理的特殊情況,或者說推論。根據斯圖爾特定理,對於三角形
的任意一邊
上的任意一點
,有:

當點
是內角平分線足時,根據角平分線定理,有:

聯立之後,即可得到內角平分線長公式(i)或(ii)。同理,可以推出外角平分線長公式(i)或(ii)。[5][2]
施泰納-萊穆斯定理
利用角平分線長公式,可以證明施泰納-萊穆斯定理——有兩條內角平分線長度相等的三角形是等腰三角形。[7]

化簡後得到:
連乘的其他各項都為正數,從而推出:
名稱
在歐美,角平分線長公式沒有特殊的名稱。[5][2][7]在中國大陸,有文獻將內角平分線長公式(i)稱為「斯庫頓定理」,乃是以荷蘭數學家弗蘭斯·范斯霍滕命名。[1][8][9]而在歐美,范斯霍滕定理指的是等邊三角形外接圓的一個性質,與三角形角平分線無關。[10]
參見
參考文獻
孫建斌. Schooten定理的证明. 數學教學研究. 1986, (1): 3-6.
別列標爾金. 初等几何学教程 上卷. 馬忠林 (譯). 北京: 高等教育出版社. 1955: 202-204.
Hadamard, Jacques. Leçons de géométrie élémentaire (géométrie plane). Paris: Armand Colin et Cie. 1898: 122-125 (法語).
劉運誼. 斯库顿定理及其应用. 數學教學通訊. 1994, (6): 12+39.
Raymond, Viglione. Proof Without Words: van Schooten's Theorem. Mathematics Magazine. 2016, 89 (2): 132 (英語).