热门问题
时间线
聊天
视角

逆威沙特分佈

来自维基百科,自由的百科全书

Remove ads

逆威沙特分布,也叫反威沙特分布作是統計學中出現的一類概率分布函數,定義在實值正定矩陣上。在貝葉斯統計中,逆威沙特分布會用作多變量正態分布協方差矩陣的共軛先驗分布。 如果一個正定矩陣 逆矩陣 遵從威沙特分布 的話,那麼就說矩陣 遵從逆威沙特分布:

事实速览 參數, 值域 ...
Remove ads

概率密度函數

逆威沙特分布的概率密度函數是:

其中 都是 正定矩陣,而Γp(·) 則是多變量伽馬分布英語Multivariate gamma function。函數

指的是函數。

Remove ads

相關定理

威沙特分布矩陣之逆的概率分布

設矩陣 並且 的矩陣,那麼 遵從逆威沙特分布:。它的概率密度函數是:

其中 ,而 是多變量伽馬分布[2]

Remove ads

威沙特分布矩陣之逆的邊際與條件分布

設矩陣 遵從逆威沙特分布。並且假設矩陣 都有相適合的分塊矩陣表示方式:

其中子矩陣 的矩陣,那麼會有:

甲) 相互獨立,其中 是子矩陣 中的舒爾補

乙) ;

丙) ,其中 矩陣正態分布

丁)

Remove ads

共軛分布

假設要求先驗分布 為逆威沙特分布 的協方差矩陣。如果觀測值 是從互相獨立的 p-變量正態分布 的隨機變量得到的,那麼條件分布 遵從的是逆威沙特分布:。其中 是樣本協方差矩陣的倍。

因此,逆威沙特矩陣是多變量正態分布的共軛先驗分布。

Remove ads

矩相關特性

期望值:[2]:85

矩陣 的每一個係數的方差:

對角係數的方差是在上式中令 得到,化簡後變成:

Remove ads

相關分布

當變量數目減到一個的時候,逆威沙特分布會變成特例:逆伽馬分布英語Inverse-gamma distribution。也就是說,當 以及 的時候,逆威沙特分布的概率密度函數是:


這正是逆伽馬分布。其中 是通常的伽馬函數


而逆威沙特分布也有推廣,其中一個是正態逆威沙特分布英語Normal-inverse-Wishart distribution

Remove ads

參見

參考來源

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads