热门问题
时间线
聊天
视角

截角五維超正方體

来自维基百科,自由的百科全书

截角五维超正方体
Remove ads

截角五維超正方體可以通過在每條棱距離頂點處截斷五維超正方體的頂點來得到。每個被截斷的頂點會產生一個新的正五胞體

事实速览 截角五維超正方體, 類型 ...
Remove ads

坐標

一個棱長為2的截角五維超正方體的每個頂點的笛卡兒坐標系坐標為:

Remove ads

投影

更多信息 考克斯特平面, B5 ...

截角五維超正方體是各維度截角超方形中的第四個:

截角超方形
...
八邊形 截角立方體 截角正八胞體 截角五維超正方體 截角六維超正方體 截角七維超正方體 截角八維超正方體
node_1 4 node_1  node_1 4 node_1 3 node  node_1 4 node_1 3 node 3 node  node_1 4 node_1 3 node 3 node 3 node  node_1 4 node_1 3 node 3 node 3 node 3 node  node_1 4 node_1 3 node 3 node 3 node 3 node 3 node  node_1 4 node_1 3 node 3 node 3 node 3 node 3 node 3 node 

參考文獻

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]頁面存檔備份,存於網際網路檔案館
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. 5D uniform polytopes (polytera). bendwavy.org. o3o3o3x4x - tan, o3o3x3x4o - bittin

外部連結

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads