阿貝爾不等式(Abel's inequality),由尼爾斯·阿貝爾(挪威語:Niels Henrik Abel)提出,給出了兩個向量內積絕對值的上界。 設{a1, a2,...}為單調遞減或單調遞增的實數集並設{b1, b2,...}為實數集或複數集。 如果{an}單調遞增: | ∑ k = 1 n a k b k | ≤ max k = 1 , … , n | B k | ( | a n | + a n − a 1 ) , {\displaystyle \left|\sum _{k=1}^{n}a_{k}b_{k}\right|\leq \operatorname {max} _{k=1,\dots ,n}|B_{k}|(|a_{n}|+a_{n}-a_{1}),} B k = b 1 + ⋯ + b k . {\displaystyle B_{k}=b_{1}+\cdots +b_{k}.} 如果{an}單調遞減: | ∑ k = 1 n a k b k | ≤ max k = 1 , … , n | B k | ( | a n | − a n + a 1 ) , {\displaystyle \left|\sum _{k=1}^{n}a_{k}b_{k}\right|\leq \operatorname {max} _{k=1,\dots ,n}|B_{k}|(|a_{n}|-a_{n}+a_{1}),} 阿貝爾不等式可從阿貝爾變換輕易得出: ∑ k = 1 n a k b k = a n B n − ∑ k = 1 n − 1 B k ( a k + 1 − a k ) . {\displaystyle \sum _{k=1}^{n}a_{k}b_{k}=a_{n}B_{n}-\sum _{k=1}^{n-1}B_{k}(a_{k+1}-a_{k}).} Remove ads參考資料 埃里克·韋斯坦因. Abel's inequality. MathWorld. Abel's inequality (頁面存檔備份,存於網際網路檔案館) in Encyclopedia of Mathematics. Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads