亨特 - 薩克斯頓方程有解析解[1]:
 
此外,Maple軟件包 TWSolution 給出多個行波解:
- tanh 展開法
 
 
 
其中 f1、f2 是重解,因此,只有兩個獨立的行波解。
 Hunter Saxton equation Maple TWSolution travelling wave solution1
Hunter Saxton equation Maple TWSolution travelling wave solution1
 Hunter Saxton equation travelling wave solution3 with Maple TWSolution package
Hunter Saxton equation travelling wave solution3 with Maple TWSolution package
- sech  arctan 展開法
![{\displaystyle f[1]:=-.20000000000000000000+(1/12)*(-(36*(1.3*arctan(1/sqrt(sech(2+3*x+.6*t)^{2}-1))*sqrt(sech(2+3*x+.6*t)+1)*sqrt(sech(2+3*x+.6*t)-1)-2.6*sqrt(sech(2+3*x+.6*t)^{2}-1)))/sqrt(sech(2+3*x+.6*t)^{2}-1))^{(}2/3)}](//wikimedia.org/api/rest_v1/media/math/render/svg/edeb688474f327c26c781b0ce75e1c066cee5dad) 
![{\displaystyle f[2]:=-.20000000000000000000+(1/3)*(-(1/4)*(-(36*(1.3*arctan(1/sqrt(sech(2+3*x+.6*t)^{2}-1))*sqrt(sech(2+3*x+.6*t)+1)*sqrt(sech(2+3*x+.6*t)-1)-2.6*sqrt(sech(2+3*x+.6*t)^{2}-1)))/sqrt(sech(2+3*x+.6*t)^{2}-1))^{(}1/3)-(1/4*I)*sqrt(3)*(-(36*(1.3*arctan(1/sqrt(sech(2+3*x+.6*t)^{2}-1))*sqrt(sech(2+3*x+.6*t)+1)*sqrt(sech(2+3*x+.6*t)-1)-2.6*sqrt(sech(2+3*x+.6*t)^{2}-1)))/sqrt(sech(2+3*x+.6*t)^{2}-1))^{(}1/3))^{2}}](//wikimedia.org/api/rest_v1/media/math/render/svg/1613b61d2c643340db0dfdf436ac759ef586e323) 
![{\displaystyle f[3]:=-.20000000000000000000+(1/3)*(-(1/4)*(-(36*(1.3*arctan(1/sqrt(sech(2+3*x+.6*t)^{2}-1))*sqrt(sech(2+3*x+.6*t)+1)*sqrt(sech(2+3*x+.6*t)-1)-2.6*sqrt(sech(2+3*x+.6*t)^{2}-1)))/sqrt(sech(2+3*x+.6*t)^{2}-1))^{(}1/3)+(1/4*I)*sqrt(3)*(-(36*(1.3*arctan(1/sqrt(sech(2+3*x+.6*t)^{2}-1))*sqrt(sech(2+3*x+.6*t)+1)*sqrt(sech(2+3*x+.6*t)-1)-2.6*sqrt(sech(2+3*x+.6*t)^{2}-1)))/sqrt(sech(2+3*x+.6*t)^{2}-1))^{(}1/3))^{2}}](//wikimedia.org/api/rest_v1/media/math/render/svg/23fc0428862c0ce5ed16119d42157e1a70816687) 
![{\displaystyle f[4]:=-.20000000000000000000+(1/3)*(-(1/4)*(187.2+140.4*x+28.08*t)^{(}1/3)-(1/4*I)*sqrt(3)*(187.2+140.4*x+28.08*t)^{(}1/3))^{2}}](//wikimedia.org/api/rest_v1/media/math/render/svg/f96b28c30da0e23c22f20cff4e79a9cfc0950307) 
![{\displaystyle f[5]:=-.20000000000000000000+(1/3)*(-(1/4)*(187.2+140.4*x+28.08*t)^{(}1/3)+(1/4*I)*sqrt(3)*(187.2+140.4*x+28.08*t)^{(}1/3))^{2}}](//wikimedia.org/api/rest_v1/media/math/render/svg/6819daf8ad1e88d63bab170f7773b70df1c7dadb) 
![{\displaystyle f[6]:=-.20000000000000000000+(1/12)*(187.2+140.4*x+28.08*t)^{(}2/3)}](//wikimedia.org/api/rest_v1/media/math/render/svg/7a2ac3373c2ad9692ce8a4a688d6491e122ded30) 
![{\displaystyle <f[7]:=-1.6666666666666666667*_{C}6+1.6666666666666666667*(-(1/4)*(9.36*Intat(1/sqrt(4*_{a}^{4}-5*_{a}^{2}+1),_{a}=JacobiSN(3+.6*x+_{C}6*t,2))+18.72)^{(}1/3)-(1/4*I)*sqrt(3)*(9.36*Intat(1/sqrt(4*_{a}^{4}-5*_{a}^{2}+1),_{a}=JacobiSN(3+.6*x+_{C}6*t,2))+18.72)^{(}1/3))^{2}}](//wikimedia.org/api/rest_v1/media/math/render/svg/9e40d91cc42a1d76fbe760a03a864e9567f54582) 
![{\displaystyle f[8]:=-1.6666666666666666667*_{C}6+1.6666666666666666667*(-(1/4)*(9.36*Intat(1/sqrt(4*_{a}^{4}-5*_{a}^{2}+1),_{a}=JacobiSN(3+.6*x+_{C}6*t,2))+18.72)^{(}1/3)+(1/4*I)*sqrt(3)*(9.36*Intat(1/sqrt(4*_{a}^{4}-5*_{a}^{2}+1),_{a}=JacobiSN(3+.6*x+_{C}6*t,2))+18.72)^{(}1/3))^{2}}](//wikimedia.org/api/rest_v1/media/math/render/svg/9d4191c6b9ee667cbfd889aa99170ecb5aedc934) 
![{\displaystyle f[9]:=-1.6666666666666666667*_{C}6+.41666666666666666668*(9.36*Intat(1/sqrt(4*_{a}^{4}-5*_{a}^{2}+1),_{a}=JacobiSN(3+.6*x+_{C}6*t,2))+18.72)^{(}2/3)}](//wikimedia.org/api/rest_v1/media/math/render/svg/7eb074e4ecdf34df58c495d8bf0fe059994191b7) 
File:Hunter Saxton extended plot1.gif
- 綜合展開
![{\displaystyle p[12]:=-1.0714+.71429*(-.50821*((1.1*ln(cos(1.3+1.4*x+1.5*t)+sqrt(cos(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.)))*sqrt(cos(1.3+1.4*x+1.5*t)-1.)*sqrt(cos(1.3+1.4*x+1.5*t)+1.))/(sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.)))^{(}1/3)-(.88026*I)*((1.1*ln(cos(1.3+1.4*x+1.5*t)+sqrt(cos(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.)))*sqrt(cos(1.3+1.4*x+1.5*t)-1.)*sqrt(cos(1.3+1.4*x+1.5*t)+1.))/(sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.)))^{(}1/3))^{2}}](//wikimedia.org/api/rest_v1/media/math/render/svg/9239e328a2a6c5f5475a73ec494627eddcaaad6a) 
![{\displaystyle p[13]:=-1.0714+.71429*(-.50821*((1.1*ln(cos(1.3+1.4*x+1.5*t)+sqrt(cos(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.)))*sqrt(cos(1.3+1.4*x+1.5*t)-1.)*sqrt(cos(1.3+1.4*x+1.5*t)+1.))/(sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.)))^{(}1/3)+(.88026*I)*((1.1*ln(cos(1.3+1.4*x+1.5*t)+sqrt(cos(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.)))*sqrt(cos(1.3+1.4*x+1.5*t)-1.)*sqrt(cos(1.3+1.4*x+1.5*t)+1.))/(sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.)))^{(}1/3))^{2}}](//wikimedia.org/api/rest_v1/media/math/render/svg/a1ef9eb96af3caafefe6ba175b30bbaac92e44c7) 
![{\displaystyle p[16]:=-1.0714+.71429*(-.50821*((1.1*ln(sin(1.3+1.4*x+1.5*t)+sqrt(sin(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.)))*sqrt(sin(1.3+1.4*x+1.5*t)-1.)*sqrt(sin(1.3+1.4*x+1.5*t)+1.))/(sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.)))^{(}1/3)-(.88026*I)*((1.1*ln(sin(1.3+1.4*x+1.5*t)+sqrt(sin(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.)))*sqrt(sin(1.3+1.4*x+1.5*t)-1.)*sqrt(sin(1.3+1.4*x+1.5*t)+1.))/(sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.)))^{(}1/3))^{2}}](//wikimedia.org/api/rest_v1/media/math/render/svg/38755b10d0e02a06199fabea8b76eda59c4a8312) 
![{\displaystyle p[17]:=-1.0714+.71429*(-.50821*((1.1*ln(sin(1.3+1.4*x+1.5*t)+sqrt(sin(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.)))*sqrt(sin(1.3+1.4*x+1.5*t)-1.)*sqrt(sin(1.3+1.4*x+1.5*t)+1.))/(sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.)))^{(}1/3)+(.88026*I)*((1.1*ln(sin(1.3+1.4*x+1.5*t)+sqrt(sin(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.)))*sqrt(sin(1.3+1.4*x+1.5*t)-1.)*sqrt(sin(1.3+1.4*x+1.5*t)+1.))/(sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.)))^{(}1/3))^{2}}](//wikimedia.org/api/rest_v1/media/math/render/svg/a9dbae9ad733c62fe5a2214b629d46436d5e959f) 
![{\displaystyle p[20]:=-1.0714+.71429*(-.64030*((-1.1*arctan(1/sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt(sec(1.3+1.4*x+1.5*t)-1.)*sqrt(sec(1.3+1.4*x+1.5*t)+1.)+1.2*sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))/sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))^{(}1/3)-(1.1091*I)*((-1.1*arctan(1/sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt(sec(1.3+1.4*x+1.5*t)-1.)*sqrt(sec(1.3+1.4*x+1.5*t)+1.)+1.2*sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))/sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))^{(}1/3))^{2}}](//wikimedia.org/api/rest_v1/media/math/render/svg/18c425140dca5ed3d9ae59581c4f3f776d19f38d) 
![{\displaystyle p[21]:=-1.0714+.71429*(-.64030*((-1.1*arctan(1/sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt(sec(1.3+1.4*x+1.5*t)-1.)*sqrt(sec(1.3+1.4*x+1.5*t)+1.)+1.2*sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))/sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))^{(}1/3)+(1.1091*I)*((-1.1*arctan(1/sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt(sec(1.3+1.4*x+1.5*t)-1.)*sqrt(sec(1.3+1.4*x+1.5*t)+1.)+1.2*sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))/sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))^{(}1/3))^{2}}](//wikimedia.org/api/rest_v1/media/math/render/svg/942281a3500926ff94b8c431ab21d1d9a287728d) 
![{\displaystyle p[29]:=-1.0714+.73794*((1.1*ln(cos(1.3+1.4*x+1.5*t)+sqrt(cos(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.)))*sqrt(cos(1.3+1.4*x+1.5*t)-1.)*sqrt(cos(1.3+1.4*x+1.5*t)+1.))/(sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.)))^{(}2/3)}](//wikimedia.org/api/rest_v1/media/math/render/svg/d36a34abcd20e586be32194f6fdde7b66c73f8e9) 
![{\displaystyle p[31]:=-1.0714+.73794*((1.1*ln(sin(1.3+1.4*x+1.5*t)+sqrt(sin(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.)))*sqrt(sin(1.3+1.4*x+1.5*t)-1.)*sqrt(sin(1.3+1.4*x+1.5*t)+1.))/(sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.)))^{(}2/3)}](//wikimedia.org/api/rest_v1/media/math/render/svg/14fa86772f2adcd508f2b828f68c20b16febd148) 
![{\displaystyle p[32]:=-1.0714+1.1714*((-1.1*arctan(1/sqrt(csc(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt(csc(1.3+1.4*x+1.5*t)-1.)*sqrt(csc(1.3+1.4*x+1.5*t)+1.)+1.2*sqrt(csc(1.3+1.4*x+1.5*t)^{2}-1.))/sqrt(csc(1.3+1.4*x+1.5*t)^{2}-1.))^{(}2/3)}](//wikimedia.org/api/rest_v1/media/math/render/svg/21238e7d34b917c8dc55bd13efd08265b90f9759) 
![{\displaystyle p[33]:=-1.0714+1.1714*((-1.1*arctan(1/sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt(sec(1.3+1.4*x+1.5*t)-1.)*sqrt(sec(1.3+1.4*x+1.5*t)+1.)+1.2*sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))/sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))^{(}2/3)}](//wikimedia.org/api/rest_v1/media/math/render/svg/b3b07ef0acb668ef19e989126954e9f7be91ed34) 
![{\displaystyle <p[34]:=-1.0714+1.1714*((-1.1*arctan(1/sqrt(sech(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt(sech(1.3+1.4*x+1.5*t)-1.)*sqrt(sech(1.3+1.4*x+1.5*t)+1.)+1.2*sqrt(sech(1.3+1.4*x+1.5*t)^{2}-1.))/sqrt(sech(1.3+1.4*x+1.5*t)^{2}-1.))^{(}2/3)}](//wikimedia.org/api/rest_v1/media/math/render/svg/c6aefc17e2a843f8076dd14b49b827f526fa4723) 
 
 
 
 
 
 
 
 
 
- 雅可比橢圓函數展開