關於與「卡諾定理 (內切圓、外接圓)」標題相近或相同的條目,請見「卡諾定理」。設ABC為三角形,O為其外心。則O到ABC各邊的距離之和為 O O A + O O B + O O C = R + r {\displaystyle OO_{A}+OO_{B}+OO_{C}=R+r} , D G + D H + D F = | D G | + | D H | − | D F | = R + r {\displaystyle {\begin{aligned}&{}\qquad DG+DH+DF\\&{}=|DG|+|DH|-|DF|\\&{}=R+r\end{aligned}}} 其中r為內切圓半徑,R為外接圓半徑。這個定理叫做卡諾定理(法語:Théorème de Carnot),以拉扎爾·卡諾為名。 Remove ads引理 在 △ A B C {\displaystyle \triangle ABC} 中, R {\displaystyle R} 為 △ A B C {\displaystyle \triangle ABC} 之外接圓半徑,且 r {\displaystyle r} 為 △ A B C {\displaystyle \triangle ABC} 之內切圓半徑,則 r = 4 R sin ( A 2 ) sin ( B 2 ) sin ( C 2 ) {\displaystyle r=4R\sin({\frac {A}{2}})\sin({\frac {B}{2}})\sin({\frac {C}{2}})} Remove ads證明 假設 △ A B C {\displaystyle \triangle ABC} 為銳角三角形, D {\displaystyle D} 為 △ A B C {\displaystyle \triangle ABC} 之外接圓圓心, D {\displaystyle D} 至 △ A B C {\displaystyle \triangle ABC} 三邊之距離分別為 D G ¯ {\displaystyle {\overline {DG}}} 、 D H ¯ {\displaystyle {\overline {DH}}} 、 D F ¯ {\displaystyle {\overline {DF}}} ,其中 D G ¯ {\displaystyle {\overline {DG}}} 為 D {\displaystyle D} 至 A B ¯ {\displaystyle {\overline {AB}}} 之距離, D H ¯ {\displaystyle {\overline {DH}}} 為 D {\displaystyle D} 至 B C ¯ {\displaystyle {\overline {BC}}} 之距離, D F ¯ {\displaystyle {\overline {DF}}} 為 D {\displaystyle D} 至 A C ¯ {\displaystyle {\overline {AC}}} 之距離。連接 D {\displaystyle D} 與 B {\displaystyle B} ,在 △ H D B {\displaystyle \triangle HDB} 中,根據三角形外心性質,可以得到 D B ¯ = R {\displaystyle {\overline {DB}}=R} ∠ H D B = ∠ A {\displaystyle \angle {HDB}=\angle {A}} 所以,可以得到 D H ¯ {\displaystyle {\overline {DH}}} 的表示式, D H ¯ = R cos ( A ) {\displaystyle {\overline {DH}}=R\cos(A)} 同理,亦可得到 D G ¯ {\displaystyle {\overline {DG}}} 和 D F ¯ {\displaystyle {\overline {DF}}} 的表示式, D G ¯ = R cos ( C ) {\displaystyle {\overline {DG}}=R\cos(C)} D F ¯ = R cos ( B ) {\displaystyle {\overline {DF}}=R\cos(B)} 因此, D G ¯ + D H ¯ + D F ¯ {\displaystyle {\overline {DG}}+{\overline {DH}}+{\overline {DF}}\,} = R ( cos ( A ) + cos ( B ) + cos ( C ) ) {\displaystyle =R(\cos(A)+\cos(B)+\cos(C))\,} = R ( 2 cos ( A + B 2 ) cos ( A − B 2 ) + 1 − 2 sin 2 ( C 2 ) ) {\displaystyle =R(2\cos({\frac {A+B}{2}})\cos({\frac {A-B}{2}})+1-2\sin ^{2}({\frac {C}{2}}))\,} = R ( 2 cos ( π − C 2 ) cos ( A − B 2 ) + 1 − 2 sin ( π − ( A + B ) 2 ) sin ( C 2 ) ) {\displaystyle =R(2\cos({\frac {\pi -C}{2}})\cos({\frac {A-B}{2}})+1-2\sin({\frac {\pi -(A+B)}{2}})\sin({\frac {C}{2}}))\,} = R ( 2 sin ( C 2 ) cos ( A − B 2 ) + 1 − 2 cos ( ( A + B ) 2 ) sin ( C 2 ) ) {\displaystyle =R(2\sin({\frac {C}{2}})\cos({\frac {A-B}{2}})+1-2\cos({\frac {(A+B)}{2}})\sin({\frac {C}{2}}))\,} = R ( 2 sin ( C 2 ) ( cos ( A − B 2 ) − cos ( ( A + B ) 2 ) ) + 1 ) {\displaystyle =R(2\sin({\frac {C}{2}})(\cos({\frac {A-B}{2}})-\cos({\frac {(A+B)}{2}}))+1)\,} = R ( 4 sin ( A 2 ) sin ( B 2 ) sin ( C 2 ) + 1 ) {\displaystyle =R(4\sin({\frac {A}{2}})\sin({\frac {B}{2}})\sin({\frac {C}{2}})+1)\,} = 4 R sin ( A 2 ) sin ( B 2 ) sin ( C 2 ) + R {\displaystyle =4R\sin({\frac {A}{2}})\sin({\frac {B}{2}})\sin({\frac {C}{2}})+R\,} 根據引理,即可得證, D G ¯ + D H ¯ + D F ¯ = R + r {\displaystyle {\overline {DG}}+{\overline {DH}}+{\overline {DF}}=R+r} 此外,若 △ A B C {\displaystyle \triangle ABC} 為鈍角三角形,且 ∠ B {\displaystyle \angle {B}} 大於 90 {\displaystyle 90} 度,其餘符號假設均與上面相同,則可以得到, D H ¯ = R cos ( A ) {\displaystyle {\overline {DH}}=R\cos(A)\,} D F ¯ = R cos ( π − B ) = − R cos ( B ) {\displaystyle {\overline {DF}}=R\cos(\pi -B)=-R\cos(B)\,} D G ¯ = R cos ( C ) {\displaystyle {\overline {DG}}=R\cos(C)\,} 所以, D G ¯ + D H ¯ − D F ¯ {\displaystyle {\overline {DG}}+{\overline {DH}}-{\overline {DF}}\,} = R ( cos ( A ) + cos ( B ) + cos ( C ) ) {\displaystyle =R(\cos(A)+\cos(B)+\cos(C))\,} = R + r {\displaystyle =R+r\,} 故得證卡諾定理。 Remove ads參考資料 Perrier, Frédéric. Carnot's Theorem in Trigonometric Disguise. The Mathematical Gazette. 2007-03, 91 (520): 115-117 [2023-05-15]. (原始內容存檔於2020-10-20). Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads