热门问题
时间线
聊天
视角
艾狄胥等差數列猜想
来自维基百科,自由的百科全书
Remove ads
艾狄胥等差數列猜想(英語:Erdős conjecture on arithmetic progressions),又稱艾狄胥-圖蘭猜想(英語:Erdős-Turán conjecture),是由兩位匈牙利數學家艾狄胥·帕爾(沃爾夫數學獎得主)與圖蘭·帕爾共同提出的數論猜想,稱倒數和發散的正整數集合中,必有任意長的等差數列。
猜想內容
對正整數數列的任意子序列,若:
- 其所有元素的倒數和發散,即
則:
- 含有任意長度的等差子序列。
Remove ads
發展
1936年,艾狄胥與好友圖蘭提出了一個較弱的等差數列猜想,即:具有正密度的自然數子集含有無窮多長度為3的等差數列。[1]
1952年,克勞斯·羅特證明了這個較弱版的猜想。
1975年,塞邁雷迪·安德烈在克勞斯·羅特證明的基礎上將這個較弱版本的猜想推廣為塞邁雷迪定理。
1976年,艾狄胥在一次紀念好友圖蘭的演講中提出了艾狄胥等差數列猜想,並懸賞5000美元給第一個證明此猜想的人。[2]
延伸閱讀
- P. Erdős: Résultats et problèmes en théorie de nombres (頁面存檔備份,存於互聯網檔案館), Séminaire Delange-Pisot-Poitou (14e année: 1972/1973), Théorie des nombres, Fasc 2., Exp. No. 24, pp. 7,
- P. Erdős and P.Turán, On some sequences of integers, J. London Math. Soc. 11 (1936), 261–264.
- P. Erdős: Problems in number theory and combinatorics, Proc. Sixth Manitoba Conf. on Num. Math., Congress Numer. XVIII(1977), 35–58.
- P. Erdős: On the combinatorial problems which I would most like to see solved, Combinatorica, 1(1981), 28. doi:10.1007/BF02579174
參考文獻
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads