热门问题
时间线
聊天
视角

康威多面體表示法

用来表述多面体的方法 来自维基百科,自由的百科全书

康威多面體表示法
Remove ads

康威多面體表示法是用來描述多面體的一種方法。 一般是用種子多面體(seed)為基礎並標示對種子多面體做的操作或運算

Thumb
此圖顯示了從立方體上的三種康威多面體表示運算,可產生11種新的多面體。新的多面體投影在正方體上一顯示其拓撲變化,以便更清楚。頂點都標有圓圈的所有形式。

種子多面體一般都為正多面體正多邊形密鋪,表示的字母則取他們名字的第一個字母,例如:

另外柱體和錐體也可以作為種子,並以它是底面邊數加一個字母表示:

例如種子「P5」是指五角柱、「P10」是指十角柱、「Y6」是指六角錐、「J86」是指球狀屋頂、「A86」是指86角反稜柱。

任何凸多面體皆可以當作種子,前提是它可以執行操作或運算

何頓·康威提出這個想法, 就像開普勒的截角定義,建立相關的多面體相同的對稱性。 它的多面體表示法能從正多面體種子表示所有阿基米德立體半正多面體卡塔蘭立體。 在一系列的應用中,康威多面體表示法可以產生許多高階多面體。

Remove ads

多面體的運算

下面列出康威多面體表示法中,多面體的運算符號,那些運算通常類似幾何變換,並以 (v,e,f) 表示進行該運算或操作後多面體的變化。

更多資訊 運算符, 範例 ...
更多資訊 運算符, 範例 ...

這些運算符號的運算優先順序皆為由右至左。例如:

所有的操作都保有對稱性,除了s和g是扭曲的像並失去了鏡射對稱。

Remove ads

例子

更多資訊 正方體 "seed", 截半 ...

生成標準種子

所有的五個正多面體皆可以從稜柱種子經過零至兩個運算或操作而產生:

康威的符號擴展

上述的運算和操作可以從正多面體種子或柱體錐體的種子產生所有的半正多面體卡塔蘭立體柏拉圖立體阿基米德立體。 許多多面體都可由高階的組合操作還表示,但是某些特別的多面體需要更多的符號來表示。

例如,幾何藝術家George W. Hart定義他的操作稱為"propellor",和另一個反映創建鏡像圖像的旋轉形式"reflect"。

  • p – "propellor" – 旋轉建立四邊形於頂點。這個操作的對偶多面體是本身: dpX=pdX。
  • r – "reflect" – 對種子進行鏡射變換。一般沒已影響,除非有sg的種子

為了表達詹森多面體,諾曼·詹森也定義了一些符號來表達它的多面體[1]

  • 下列種子都必須要在後面加註邊數:
    • P = 柱體 (Prism)
    • A = 反稜柱 (Antiprism)
    • Y = 錐體 (Pyramid)
    • Q = 帳塔
    • R = 罩帳
    • L = 三面單元組成一個正方形和對立的三角形
    • U = n邊形,旁邊有三角形交替的邊。
    • J = 直接表示詹森多面體,加註的數字代表詹森多面體的編號。
  • 擴展的符號:
    • + = 將符號後的種子加到符號前的種子之適當的面,可省略
    • - = 在符號前的種子上照到跟符號後種子相同的部分並切除之
    • × = 將符號前動作做符號後的次數次,符號後必為常數,可省略
    • () = 將種子括號並指定動作
  • 例如:
Remove ads

其它的擴展

下面擴展符號也可以用於康威多面體表示法,但是在施萊夫利符號中,更為常用。

  • t0,1 = 截角
  • t0,2 = 截邊:小斜方截半
  • t0,1,2 = 截邊再截角:大斜方截半
  • t0,3 = 截面:向下鋸齒(Runcination) : 切割多面體,同時沿面、邊和頂點,建立新的面代替原來的面、邊和頂點中心。
  • t0,1,3 = 截面再截角
  • t0,2,3 = 截面再截邊
  • t0,1,2,3 = 截面再截邊再截角
  • t0,4 = 截胞 : 切割多胞體,同時沿胞、面、邊和頂點,建立新的胞代替原來的胞、面、邊和頂點中心。
  • t1 = 截半
  • t1,2 = 截半再截邊:雙截角
  • t2
  • h = 交替 alternate

例如:

幾何座標的衍生形式

密鋪

例如: 球面正五邊形密鋪:正十二面體種子 (D)
Thumb
D
Thumb
tD
Thumb
aD
Thumb
tdD
Thumb
eD
Thumb
teD
Thumb
sD
Thumb
dD
Thumb
dteD
例如:歐幾里得平面正六邊形密鋪種子 (H)
Thumb
H
Thumb
tH
Thumb
aH
Thumb
tdH = H
Thumb
eH
Thumb
teH
Thumb
sH
Thumb
dH
Thumb
dtH
Thumb
daH
Thumb
dtdH = dH
Thumb
deH
Thumb
dteH
Thumb
dsH
更多資訊 {7,3} "seed", truncate ...
更多資訊 {4,3,8} "seed", truncate ...
Remove ads

幾何體

例如: 透明的 正四面體 種子 (T)
Thumb
T
Thumb
tT
Thumb
aT
Thumb
tdT
Thumb
eT
Thumb
bT
Thumb
sT
Thumb
dT
Thumb
dtT
Thumb
jT
Thumb
kT
Thumb
oT
Thumb
mT
Thumb
gT
例如: 四維空間的 正八胞體 種子 ( {4,3,3} )
Thumb
{4,3,3}
Thumb
t{4,3,3}
Thumb
a{4,3,3}
Thumb
td{4,3,3}
Thumb
e{4,3,3}
Thumb
b{4,3,3}
Thumb
s{4,3,3}
Thumb
d{4,3,3}

其他多面體

迭代簡單簡單操作的形式,可以產生更大的多面體,並保持基本對稱性。頂點被假設是對相同半徑的球面。

四面體對稱

八面體對稱

二十面體對稱

手性對偶

參見

外部連結和參考文獻

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads