單位元素 - Wikiwand
For faster navigation, this Iframe is preloading the Wikiwand page for 單位元素.

單位元素

維基百科,自由的百科全書

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要擴充。 (2015年4月18日)請協助改善這篇條目,更進一步的訊息可能會在討論頁或擴充請求中找到。請在擴充條目後將此模板移除。 此條目沒有列出任何參考或來源。 (2015年4月18日)維基百科所有的內容都應該可供查證。請協助添加來自可靠來源的引用以改善這篇條目。無法查證的內容可能被提出異議而移除。

單位元素集合裏的一種特別的元素,與該集合裏的二元運算有關。當單位元素和其他元素結合時,並不會改變那些元素。單位元素被使用在和其他相關概念之中。

為一帶有一二元運算的集合(稱之為原群),則內的一元素被稱為左單位元素若對所有在S內的a而言,;且被稱為右單位元素若對所有在S內的a而言,。而若同時為左單位元素及右單位元素,則稱之為雙邊單位元素,又簡稱為單位元素

對應於加法的單位元素稱之為加法單位元素(通常被標為0),而對應於乘法的單位元素則稱之為乘法單位元素(通常被標為1)。這一區分大多被用在有兩個二元運算的集合上,比如

例子

集合 運算 單位元素
實數 +(加法 0
實數 ·(乘法 1
實數 1(只為右單位元素)
複數 +(加法 0
複數 ·(乘法 1
矩陣 +(加法) 零矩陣
方陣 ·(乘法) 單位矩陣
所有從集合M映射至其自身的函數 函數複合 單位函數
所有從集合M映射至其自身的函數 摺積 狄拉克δ函數
字串 串接 空字元串
擴展的實軸 最小值
擴展的實軸 最大值
集合M的子集 (交集) M
集合 (併集) (空集)
布爾邏輯 邏輯與 ⊤(真值)
布爾邏輯 邏輯或 ⊥(假值)
閉二維流形 #(連通和
只兩個元素 * 定義為

都是左單位元素,但不存在右單位元素和雙邊單位元素

如最後一個例子所示,有若干個左單位元素是可能的,且事實上,每一個元素都可以是左單位元素。同樣地,右單位元素也一樣。但若同時存在有右單位元素和左單位元素,則它們會相同且只存在單一個雙邊單位元素。要證明這個,設為左單位元素且為右單位元素,則。特別地是,不存在兩個以上的單位元素。若有兩個單位元素的話,則必同時等於

一個代數沒有單位元素也是有可能的。最一般的例子為向量內積外積。前者缺乏單位元素的原因在於相乘的兩個元素都會是向量,但乘積卻會是個純量。而外積缺乏單位元素的原因則在於任一非零外積的方向必和相乘的兩個向量相正交-因此不可能得出一個和原向量指向同方向的外積向量。

另見

{{bottomLinkPreText}} {{bottomLinkText}}
單位元素
Listen to this article