開路測試

計算

${\displaystyle \mathbf {W} =\mathbf {V_{1)) \mathbf {I_{0)) \cos \phi _{0))$

${\displaystyle \cos \phi _{0}={\frac {\mathbf {W} }{\mathbf {V_{1)) \mathbf {I_{0)) ))}$

${\displaystyle \mathbf {I_{m)) =\mathbf {I_{0)) \sin \phi _{0))$
${\displaystyle \mathbf {I_{w)) =\mathbf {I_{0)) \cos \phi _{0))$

阻抗

${\displaystyle \mathbf {X_{0)) ={\frac {\mathbf {V_{1)) }{\mathbf {I_{m)) ))}$

${\displaystyle \mathbf {R_{0)) ={\frac {\mathbf {V_{1)) }{\mathbf {I_{w)) ))}$

${\displaystyle \mathbf {Z_{0)) ={\sqrt {\mathbf {R_{0)) ^{2}+\mathbf {X_{0)) ^{2))))$

or

${\displaystyle \mathbf {Z_{0)) =\mathbf {R_{0)) +\mathbf {j} \mathbf {X_{0)) }$

(以上為錯誤部份)

導納

${\displaystyle \mathbf {Y_{0)) ={\frac {1}{\mathbf {Z_{0)) ))}$

${\displaystyle \mathbf {G_{0)) ={\frac {\mathbf {W} }{\mathbf {V_{1)) ^{2))))$

${\displaystyle \mathbf {B_{0)) ={\sqrt {\mathbf {Y_{0)) ^{2}-\mathbf {G_{0)) ^{2))))$

${\displaystyle \mathbf {Y_{0)) =\mathbf {G_{0)) +\mathbf {j} \mathbf {B_{0)) }$

${\displaystyle \mathbf {W} }$為瓦特計讀值

${\displaystyle \mathbf {V_{1)) }$為一次側所給電壓

${\displaystyle \mathbf {I_{0)) }$為無載電流

${\displaystyle \mathbf {I_{m)) }$為無載電流的激磁成份

${\displaystyle \mathbf {I_{w)) }$為無載電流的銅損成份

${\displaystyle \mathbf {Z_{0)) }$為激磁阻抗

${\displaystyle \mathbf {Y_{0)) }$為激磁導納

參考資料

• Kosow. Electric Machinery and Transformers. Pearson Education India. 2007.
• Smarajit Ghosh. Fundamentals of Electrical and Electronics Engineering. PHI Learning Pvt. Ltd. 2004.
• Wildi, Wildi Theodore. Electrical Machines , Drives And Power Systems, 6th edtn.. Pearson. 2007.
• Grainger. Stevenson. Power System Analysis. McGraw-Hill. 1994.

相關條目

• ^ 陳銘良 感應馬達無感測直接轉矩控制系統