热门问题
时间线
聊天
视角
五維超正方體
来自维基百科,自由的百科全书
Remove ads
五維超立方體(Penteract)或稱正十超胞體(Decateron)是3個五維凸正多超胞體之一,是五維的超方形,四維超正方體、三維正方體、二維正方形的五維類比。由10個四維超立方體胞、40個正方體胞、80個正方形面、80條棱、32個頂點組成。
Remove ads
幾何性質
五維超正方體存在於五維歐幾里得空間中,其32個頂點有如下形式:
- (±1,±1,±1,±1,±1)
五維超正方體是它們的凸包。它包含了所有坐標值絕對值都小於等於1的所有點。在它的頂點處有5條棱相交,應此它的頂點圖是正五胞體,在它的棱處有4個立方體維脊相交,應此它的棱圖是正四面體。它有施萊夫利符號{4,3,3,3},考斯特-迪肯符號,它的對偶多超胞體是正三十二超胞體(Triacontaditeron),也叫五維正軸體(Pentacross,5-orthoplex)。
作為五維的立方形,一個五維凸正多超胞體,它具有BC5對稱群構造,對應施萊夫利符號{4,3,3,3},考斯特-迪肯符號。同時,它可被看作是四維超正方體的稜柱,對應施萊夫利符號{4,3,3}×{},考斯特-迪肯符號
。並且,它還是正方形和立方體的乘積,在3個維度有立方體的對稱性BC3,而在另外兩個維度表現出正方形的對稱性BC2,施萊夫利符號{4,3}×{4},考斯特-迪肯符號
。
圖像
五維超立方體可以以自身的BCn(n≤5)對稱性被平行投影到2維平面上:
![]() 斜線架投影 |
![]() B5考克斯特平面 |
![]() 頂點—棱圖象。 |
![]() 五維超立方體的5D到4D施萊爾投影的4D到3D球極投影的3D到2D透視投影 |
在五維空間旋轉的透視投影 |
相關連結
參考文獻
- H.S.M.考克斯特:
- Coxeter, Regular Polytopes,(3rd edition, 1973), Dover edition, ISBN 0-486-61480-8, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions(n≥5)
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1](頁面存檔備份,存於互聯網檔案館)
- (Paper 22)H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23)H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24)H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- 諾曼·詹森 Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.(1966)
- Klitzing, Richard. 5D uniform polytopes (polytera) o3o3o3o4x - pent. bendwavy.org.
- 埃里克·韋斯坦因. Hypercube. MathWorld.
- Olshevsky, George, Measure polytope at Glossary for Hyperspace.
- Multi-dimensional Glossary: hypercube(頁面存檔備份,存於互聯網檔案館) Garrett Jones
Remove ads
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads