热门问题
时间线
聊天
视角
亨利反應
来自维基百科,自由的百科全书
Remove ads
亨利反應(英語:Henry reaction)是有機合成中用以構建碳-碳鍵的人名反應,由硝基烷烴和醛或酮在鹼性條件下偶聯產生β-硝基醇[1][2][3]。 該反應於1895年由比利時化學家路易斯·亨利(Louis Henry,1834-1913)發現,是有機化學中常見的反應,可以在後續步驟中用於合成硝基烯烴、α-硝基酮、β-氨基醇等結構。Henry反應與羥醛反應相似,故而有時會被稱為硝基羥醛反應(nitroaldol reaction)[2][4]。

機理
許多硝基烷烴的α-H呈弱酸性,pKa≈17 [5][6],Henry反應起始於鹼進攻硝基烷烴的α-H形成氮酸酯結構。儘管在此共振結構中有碳負離子與硝基兩個親核中心,據悉[7]偶聯的關鍵步卻是由碳進攻羰基進行,產生的β-硝基醇鹽從鹼的共軛酸處質子化,最終得到β-硝基醇產物。Henry反應的每一步都是可逆的[2][3]。

空間構型
Henry反應產物的立體選擇性由取代基的空間效應所影響,在如圖所示的非對映異構體的紐曼式中,產物的立體選擇性同時受R取代基的大小和硝基、羰基的極性取向[註 1]影響。通常認為在反應的過渡態時,底物R基團的空間效應越大,反應就越容易得到反式產物[3][8]。由於反應的可逆性和硝基取代碳易形成差向異構體的原因,Henry反應的產物通常是對映異構體與非對映異構體的混合物。

1992年,柴崎正勝報告了使用柴崎催化劑進行的對映選擇性硝基羥醛反應[9],通過使用手性金屬催化劑,硝基和羰基與中心金屬配位結合,是誘導Henry反應得到對映或非對映選擇性產物的最常用方法之一,已知的可用金屬包括鋅、鈷、銅、鎂和鉻[10]。

特點
Henry反應僅需要使用催化量的鹼即可驅動反應進行,並且反應條件和鹼的類型非常寬泛,如離子性的鹼(如鹼金屬水化物、醇鹽、碳酸鹽和氟化物等)或有機鹼(如胍、酶、DBU、Verkade鹼等),此外使用不同的鹼與溶劑不會對反應過程產生大的影響[2]。
Henry反應的主要缺點是,非常容易發生副反應。除去反應本身每一步都可逆的影響,產物β-硝基醇也容易脫水。對某些空間位阻大的底物,甚至可能發生鹼催化的自縮合Cannizzaro反應 [2]。

Henry反應有許多改良方法,其中以調整反應條件 (高壓、無溶劑、非均相反應等)來提高化學及區域選擇性[2]、使用手性金屬催化劑以誘導對映或非對映選擇性[10]、氮雜環不對稱Hnery反應[11](用於合成鄰二胺)為最多的改進方法。
應用
在1999年,Menzel及其同事開發了一條合成L-acosamine的路線,這是一類蒽環類藥物的糖類亞基化合物[12][13]。

Henry反應可以作為可控的羥醛反應,可用於不對稱合成對映選擇性的加成產物,例如苯甲醛和硝基甲烷在三氟甲磺酸鋅作為路易斯酸、DIPEA、N-甲基麻黃鹼((+)-NME)作為手性配體的催化系統中反應[14]。下圖所示的是非對映選擇性Henry反應[15]:

在2005年,Barua及其同事柴崎正勝以不對稱Henry反應作為關鍵步,全合成了強效氨肽酶抑制劑(-)-Bestatin[註 2],總體產率為26%[12][16]:

在2006年,Hiemstra及其同事研究了奎寧衍生物催化的不對稱芳香醛-硝基甲烷Henry反應,通過使用特定的催化劑,能夠誘導產生對應的異構體[17]。

在2006年,Purkarthofer等人發現從橡膠樹處得到的(S)-羥基腈裂合酶催化合成(S)- β-硝基醇的生物催化Henry反應[18]。隨後的2011年,Fuhshuku和Asano發現了擬南芥中的(R)-羥基腈裂合酶可以催化芳香醛和硝基甲烷合成(R)- β-硝基醇[19]。
Remove ads
備註
參考文獻
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads