热门问题
时间线
聊天
视角
希尔伯特第十问题
来自维基百科,自由的百科全书
Remove ads
希尔伯特的第十个问题,就是不定方程(又称为丢番图方程)的可解答性。这是希尔伯特于1900年在巴黎的国际数学家大会演说中,所提出的23个重要数学问题的第十题。
这个问题是问,对于任意多个未知数的整系数不定方程,要求给出一个可行的方法(verfahren),使得借助于它,通过有限次运算,可以判定该方程有无整数解。
这里德文的方法(verfahren),就是英文所谓的算法(algorithm)。对于算法的概念我们是不陌生的,例如远在古希腊时代,人们就知道可以使用辗转相除法,求两个自然数的最大公约数。还有,任给一个自然数,也存在着一个方法,在有限步骤内,可以判定这个数是不是质数。
虽然人们很早就有了算法的朴素概念,但对于到底什么是可行的计算,仍没有精确的概念。一个问题的可解与不可解究竟是什么含意,当时的人们还不得而知。然而为了研究第十问题,必须给予算法精确化的观念。这点还有赖于数理逻辑学对可计算性理论的发展,才得以实现。
Remove ads
基本观念
不定方程是指含任意数量变元的整系数多项式方程
这里都是正整数、负整数或零,而变元的定义域是自然数或整数。若能找到整数,使得
则称此不定方程具有整数解。例如:
则(3,4,5)、(5,12,13)等都是它的整数解。事实上可找出它所有的整数解:,其中。这是著名的勾股定理或称毕式定理。
著名的费马最后定理,是说当时,方程式
没有非零整数解。
Remove ads
总结
视角
自然数,自然数对(或具有自然数的n-元组)的有丢番图定义的集合被称为丢番图集。丢番图定义可以由方程组或单个方程给出,因为方程组
等价于单个方程:
递归可枚举集可以被描述为一个集合,对其存在一种算法,对这个算法,当集合的一个成员被输入时最终会停机,但一个非成员被输入时会不确定的继续。是可计算性理论(亦即递归论)给出了算法可计算性的直觉符号的精确解释,因而使得递归可枚举性的符号具有完美的严格性。显然,丢番图集是递归可枚举的。因为可以排列所有可能的未知数的值的多元组为一个序列,然后对于一个给定的参数值,一个接一个的测试这些多元组,看他们是否是相应方程的解。希尔伯特第十问题的不可解性源于令人惊讶的事实──其逆命题成立:
每个递归可枚举集都是丢番图集。
这一结果即马季亚谢维奇定理(由他提供的完成证明的关键步骤)和MRDP定理(即尤里·马季亚谢维奇(Yuri Matiyasevich),朱莉娅·罗宾逊(Julia Robinson),马丁·戴维斯(Martin Davis)和希拉里·普特南(Hilary Putnam)各人姓氏的首字母缩写)。因为“存在一个递归可枚举集是不可计算的”,希尔伯特第十问题的不可解性是其直接后果。实际上,还有更多的结论:有一个多项式
有整数系数使对于方程
有自然数解的的值的集合不可计算。因此,不仅没有一般的算法测试丢番图方程可解性,甚至也没有算法来测试单一参数家族的方程。
![]() | 此章节尚无任何内容,需要扩充。 (2020年6月7日) |
![]() | 此章节尚无任何内容,需要扩充。 (2020年6月7日) |
![]() | 此章节尚无任何内容,需要扩充。 (2020年6月7日) |
![]() | 此章节尚无任何内容,需要扩充。 (2020年6月7日) |
历史发展
第十问题的解决是众人集体的智慧结晶。其中美国数学家马丁·戴维斯(Martin Davis)、希拉里·普特南(Hilary Putnam)和朱莉娅·罗宾逊(Julia Robinson)做出了突出的贡献。而最终的结果,是由俄国数学家尤里·马季亚谢维奇(Yuri Matiyasevich)于1970年所完成的。
Remove ads
外部链接
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads