幂 - Wikiwand
For faster navigation, this Iframe is preloading the Wikiwand page for .

维基百科,自由的百科全书

此条目需要补充更多来源。 (2014年2月28日)请协助添加多方面可靠来源以改善这篇条目,无法查证的内容可能会因为异议提出而移除。

幂运算(英语:Exponentiation),又称指数运算,是数学运算表达式,读作“次方”或“次幂”。其中,称为底数,而称为指数,通常指数写成上标,放在底数的右边。当不能用上标时,例如在编程语言电子邮件中,通常写成b^nb**n;也可视为超运算,记为b[3]n;亦可以用高德纳箭号表示法,写成b↑n

n为正整数, 可以把看作乘方的结果,等同于自乘次。

当指数为1时,通常不写出来,因为运算出的值和底数的数值一样;指数为2时,可以读作“平方”;指数为 3 时,可以读作“立方”。

起始值1(乘法的单位元)乘上底数()自乘指数()这么多次。这样定义了后,很易想到如何一般化指数 0 和负数的情况:除 0 外所有数的零次方都是 1 ;指数是负数时就等于重复除以底数(或底数的倒数自乘指数这么多次),即:

分数为指数的幂定义为,即次方再开方根

0的0次方目前没有数学家给予正式的定义。在部分数学领域中,如组合数学,常用的惯例是定义为 1 ,也有人主张定义为 1 。

因为在十进制,十的次方很易计算,只需在后面加零即可,所以科学记数法借此简化记录的数字;二的幂计算机科学相当重要。

n复数b是正实数时,

exp是指数函数而 ln是自然对数

重要的恒等式

运算法则

  • 同底数幂相乘,底数不变,指数相加:
  • 同底数幂相除,底数不变,指数相减:
  • 同指数幂相除,指数不变,底数相除:

其他等式

运算律

加法和乘法存在交换律,比如:,但是幂的运算不存在交换律,,但是

同样,加法和乘法存在结合律,比如:,尽管,但是

整数指数幂

整数指数幂的运算只需要初等代数的知识。

正整数指数幂

表达式被称作平方,因为边长为的正方形面积是

表达式被称作立方,因为边长为的正方体体积是

所以读作3的平方读作2的立方

指数表示的是底数反复相乘多少次。比如,指数是5,底数是3,表示3反复相乘5次。

或者,整数指数幂可以递归地定义成:

指数是1或者0

注意表示仅仅1个3的乘积,就等于3。

注意

继续,得到,所以

另一个得到此结论的方法是:通过运算法则

时,

  • 任何数的1次方是它本身。

零的零次方

其实还并未被数学家完整的定义,但部分看法是 ,在程式语言中(python)

英版wiki之零的零次方字条(Zero to the power of zero)

在这里给出这一种极限的看法

于是,可以求出 x 取值从 1 到 0.0000001 计算得到的值,如图

负数指数

我们定义任何不为 0 的数 a -1 次方等于它的倒数。

对于非零定义

,

时分母为 0 没有意义。

证法一:

根据定义,当

, 所以

证法二:

通过运算法则

时,可得

负数指数还可以表示成1连续除以。比如:

.

特殊数的幂

10的幂

十进制的计数系统中,10的幂写成1后面跟着很多个0。例如:

因此10的幂用来表示非常大或者非常小的数字。如:299,792,458(真空中光速,单位是米每秒),可以写成 近似值 .

国际单位制词头也使用10的幂来描述特别大或者特别小的数字,比如:词头“千”就是 ,词头“毫”就是

2的幂

1的幂

1的任何次幂都为1

0的幂

0的正数幂都等于0。

0的负数幂没有定义。

任何非0之数的0次方都是1;而0的0次方是悬而未决的,某些领域下常用的惯例是约定为1。[1]但某些教科书表示0的0次方为无意义。[2]也有人主张定义为1。

负1的幂

-1的奇数幂等于-1

-1的偶数幂等于1

指数非常大时的幂

一个大于1的数的幂趋于无穷大,一个小于-1的数的幂趋于负无穷大

, (视乎n 是奇数或偶数)

一个绝对值小于1的数的幂趋于0

1的幂永远都是1

如果数a趋于1而它的幂趋于无穷,那么极限并不一定是上面几个。一个很重要的例子是:

参见e的幂

其他指数的极限参见幂的极限

正实数的实数幂

一个正实数的实数幂可以通过两种方法实现。

  • 有理数幂可以通过N次方根定义,任何非0实数次幂都可以这样定义
  • 自然对数可以被用来通过指数函数定义实数幂

N次方根

从上到下:
  
    
      
        
          x
          
            
              1
              8
            
          
        
        ,
         
        
          x
          
            
              1
              4
            
          
        
        ,
         
        
          x
          
            
              1
              2
            
          
        
        ,
         
        
          x
          
            1
          
        
        ,
         
        
          x
          
            2
          
        
        ,
         
        
          x
          
            4
          
        
        ,
         
        
          x
          
            8
          
        
      
    
    {\displaystyle x^{\frac {1}{8)),\ x^{\frac {1}{4)),\ x^{\frac {1}{2)),\ x^{1},\ x^{2},\ x^{4},\ x^{8))
从上到下:

一个次方根是使

如果是一个正实数,是正整数,那么方程只有一个正实数。 这个根被称为次方根,记作:,其中叫做根号。或者,次方根也可以写成. 例如

当指数是时根号上的2可以省略,如:

有理数幂

有理数指数通常可以理解成

e的幂

这个重要的数学常数e,有时叫做欧拉数,近似2.718,是自然对数的底。它提供了定义非整数指数幂的一个方法。 它是从以下极限定义的:

指数函数的定义是:

可以很简单地证明e的正整数k次方是:

实数指数幂

y = bx对各种底数b的图像,分别为绿色的10、红色的e、蓝色的2和青色的1/2。
y = bx对各种底数b的图像,分别为绿色的10、红色的e、蓝色的2和青色的1/2。

因为所有实数可以近似地表示为有理数,任意实数指数x可以定义成[3]

例如:

于是

实数指数幂通常使用对数来定义,而不是近似有理数。

自然对数是指数函数反函数。 它的定义是:对于任意,满足

根据对数和指数运算的规则:

这就是实数指数幂的定义:

实数指数幂的这个定义和上面使用有理数指数和连续性的定义相吻合。对于复数,这种定义更加常用。

负实数的实数幂

如果是负数且偶数,那么是正数。 如果是负数且奇数,那么是负数。

使用对数和有理数指数都不能将(其中是负实数,实数)定义成实数。在一些特殊情况下,给出一个定义是可行的:负指数的整数指数幂是实数,有理数指数幂对于是奇数)可以使用次方根来计算,但是因为没有实数使,对于是偶数)时必须使用虚数单位

使用对数的方法不能定义时的为实数。实际上,对于任何实数都是正的,所以对于负数没有意义。

使用有理数指数幂来逼近的方法也不能用于负数因为它依赖于连续性。函数对于任何正的有理数是连续的,但是对于负数,函数在有些有理数上甚至不是连续的。

例如:当,它的奇数次根等于-1。所以如果是正奇数整数,是奇数,是偶数。虽然有理数使集合稠密集,但是有理数使集合也是。所以函数在有理数域不是连续的。

正实数的复数幂

e的虚数次幂

指数函数ez可以通过(1 + z/N)N当N趋于无穷大时的极限来定义,那么eiπ就是(1 + iπ/N)N的极限。在这个动画中n从1取到100。(1 + iπ/N)N的值通过N重复增加在复数平面上展示,最终结果就是(1 + iπ/N)N的准确值。可以看出,随着N的增大,(1 + iπ/N)N逐渐逼近极限-1。这就是欧拉公式。
指数函数ez可以通过(1 + z/N)NN趋于无穷大时的极限来定义,那么e就是(1 + /N)N的极限。在这个动画中n从1取到100。(1 + /N)N的值通过N重复增加在复数平面上展示,最终结果就是(1 + /N)N的准确值。可以看出,随着N的增大,(1 + /N)N逐渐逼近极限-1。这就是欧拉公式

复数运算的几何意义和e的幂可以帮助我们理解是实数),即纯虚数指数函数。想象一个直角三角形(括号内是复数平面内三角形的三个顶点),对于足够大的,这个三角形可以看作一个扇形,这个扇形的中心角就等于弧度。对于所有,三角形互为相似三角形。所以当足够大时的极限是复数平面上的单位圆弧度的点。这个点的极坐标直角坐标。所以,而这个函数可以称为纯虚数指数函数。这就是欧拉公式,它通过复数的意义将代数学三角学联系起来了。

等式的解是一个整数乘以[4]

更一般地,如果,那么的每一个解都可以通过将的整数倍加上得到:

这个复指数函数是一个有周期周期函数

更简单的:

三角函数

根据欧拉公式三角函数余弦和正弦是:

历史上,在复数发明之前,余弦和正弦是用几何的方法定义的。上面的公式将复杂的三角函数的求和公式转换成了简单的指数方程

使用了复数指数幂之后,很多三角学问题都能够使用代数方法解决。

e的复数指数幂

可以分解成。其中决定了的方向

正实数的复数幂

如果是一个正实数,是任何复数,定义成,其中是方程的唯一解。所以处理实数的方法同样可以用来处理复数。

例如:

函数

当函数名后有上标的数(即函数的指数),一般指要重复它的运算。例如。特别地,反函数

三角函数的情况有所不同,一个正指数应用于函数的名字时,指答案要进行乘方运算,而指数为-1时则表示其反函数。例如:表示。因此在三角函数时,使用来表示的反函数

抽象代数

计算自然数(正整数)的算法

最快的方式计算,当是正整数的时候。它利用了测试一个数是奇数在计算机上是非常容易的,和通过简单的移所有位向右来除以2的事实。

伪代码

   1. 1 → y, n → k, a → f
   2.若k不為0,執行3至6
     3.若k為奇數, y * f → y
     4. k [[位操作#移位|右移]]1位(即k / 2 → k ,小數點無條件捨去)
     5. f * f → f
     6.回到2
   7.傳回y

C/C++语言中,你可以写如下算法:

   double power (double a, unsigned int n)
   {
        double y = 1;
        double f = a;
        unsigned int k = n;
        while (k != 0) {
           if (k % 2 == 1) y *= f;
           k >>= 1;
           f *= f;
        }
        return y;
   }

此算法的时间复杂度,比普通算法快(a自乘100次,时间复杂度),在较大的时候更为显著。

例如计算,普通算法需要算100次,上述算法则只需要算7次。若要计算可先以上述算法计算,再作倒数。

注释

  1. ^ Augustin-Louis Cauchy, Cours d'Analyse de l'École Royale Polytechnique (1821). In his Oeuvres Complètes, series 2, volume 3.
  2. ^ 康轩国中1上《FUN学练功坊①》P.35:a的0次方=1(a≠0)(注:0的0次方为无意义)
  3. ^ Denlinger, Charles G. Elements of Real Analysis. Jones and Bartlett. 2011: 278–283. ISBN 978-0-7637-7947-4. 
  4. ^ This definition of a principal root of unity can be found in:

另见

外部链接

{{bottomLinkPreText}} {{bottomLinkText}}
Listen to this article