For faster navigation, this Iframe is preloading the Wikiwand page for 幂等.

幂等

维基百科,自由的百科全书

此条目需要精通或熟悉相关主题的编者参与及协助编辑。 (2019年3月11日)请邀请适合的人士改善本条目。更多的细节与详情请参见讨论页

数学里,幂等有两种主要的定义。

  • 在某二元运算下,幂等元素是指被自己重复运算(或对于函数是为复合)的结果等于它自己的元素。例如,乘法下唯一两个幂等实数为0和1。
  • 一元运算幂等的时,其作用在任一元素两次后会和其作用一次的结果相同。例如,高斯符号便是幂等的。
  • 一元运算的定义是二元运算定义的特例(详情请见下面)。

定义

二元运算

为一具有作用于其自身的二元运算的集合,则的元素称为幂等的(相对于)当[1][2]

特别的是,任一单位元都是幂等的。若的所有元素都是幂等的话,则其二元运算*被称做是幂等的。例如,并集交集的运算便都是幂等的。

一元运算

为一由映射至一元运算,则为幂等的,当对于所有在内的

特别的是,恒等函数一定是幂等的,且任一常数函数也都是幂等的。

注意当考虑一由的所有函数所组成的集合时,在一元运算下为幂等的当且仅当在二元运算下,相对于其复合运算(标记为)会是幂等的。这可以写成

一般例子

函数

如上述所说,恒等函数和常数函数总会是幂等的。较不当然的例子有实数复数引数的绝对值函数,以及实数引数的高斯符号

将一拓扑空间X内各子集U映射至U闭包的函数在X的幂集上是幂等的。这是闭包算子的一个例子;所有个闭包算子都会是幂等函数。

环的幂等元素

定义上,的幂等元素为一相对于环乘法为幂等的元素。可以定义一于环幂等上的偏序:若ef为幂等的,当ef = fe = e时,标记为ef。依其顺序,0会是最小幂等元素,而1为最大幂等元素。

e在环R内为幂等的,则eRe一样会是个乘法单位元为e的环。

两个幂等元素ef被称为正交的ef=fe=0。在此一情形下,e+f也是幂等的,且有ee + ffe + f

e在环R内为幂等的,则f = 1 − e也会是幂等的,且ef正交。

一在R内的幂等元素e称为核心的,若对所有在R内的xex=xe。在此情形之下,Re会是个乘法单位元为e的环。R的核心幂等元素和R的分解为环的直和有很直接的关接。若R为环R1、...、Rn的直和,则环Ri的单位元在R内为核心幂等的,相互正交,且其总和为1。相反地,给出R内给相互正交且总和为1的核心幂等元素e1、...、en,则R会是环Re1、...、Ren的直和。所有较有趣的是,每一于R内的核心幂等e都会给出一R的分解-ReR(1 − e)的直和。

任一不等于0和1的幂等元素都是零因子(因为e(1 − e) = 0)。这表示了整环除环都不会存在此种幂等元素。局部环也没有此种幂等元素,但理由有点不同。唯一包含于一环的雅各布森根内的幂等元素只有0。共四元数环内会有一幂等元素组成的悬链曲面

所有元素都幂等的环称做布尔环。可证明在每一此类环内,乘法都是可交换的,且每一元素都有其各自的加法逆元

其他例子

幂等运算也可以在布尔代数内找到。逻辑和逻辑或便都是幂等运算。

线性代数里,投影是幂等的。亦即,每一将向量投射至一子空间V(不需正交)上的线性算子,都是幂等的。

一幂等半环为其加法(非乘法)为幂等的半环

参考文献

  1. ^ Valenza, Robert. Linear Algebra: An Introduction to Abstract Mathematics. Berlin: Springer Science & Business Media. 2012: 22 [2019-03-11]. ISBN 9781461209010. (原始内容存档于2020-11-27). An element s of a magma such that ss = s is called idempotent. 
  2. ^ Doneddu, Alfred. Polynômes et algèbre linéaire. Paris: Vuibert. 1976: 180 [2019-03-11]. (原始内容存档于2019-06-08) (法语). Soit M un magma, noté multiplicativement. On nomme idempotent de M tout élément a de M tel que a2 = a. 

参见

{{bottomLinkPreText}} {{bottomLinkText}}
幂等
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.