功 - Wikiwand
For faster navigation, this Iframe is preloading the Wikiwand page for .

维基百科,自由的百科全书

建议将动能定理并入本条目或章节。(讨论)

(英语:work),也叫机械功,是物理学中表示位移的累积的物理量,指从一种物理系统到另一种物理系统的能量转变,尤其是指通过使物体朝向力的方向移动的力的作用下能量的转移。与机械能相似的是,功也是标量国际单位制单位为焦耳

球员对球做正功,使其动能增加。  通用符号:W SI单位:J(焦耳)基本公式:W = F×D,W = τθ
球员对球做正功,使其动能增加。
通用符号:W
SI单位:J(焦耳)
基本公式:W = F×D,W = τθ

“功”一词最初是法国数学家贾斯帕-古斯塔夫·科里奥利创造的。[1]

动能定理,若一个外力作用于一物体使之动能Ek0增至Ek,那么,此力所做的机械功为:

[2]

其中m是物体的质量,v是物体的速度。

机械功就是力与位移的内积

[3]

若力与位移的夹角小于直角,则机械功为正,亦称为力做正功。若力与位移的夹角大于直角,则机械功为负,或力做负功,或物体克服力做功。

若力的方向与位移方向垂直,则此力不做功:[3]

举例来说:一个10牛顿(F=10 N)的力沿着点移动两米(D=2 m),那么它所做的功为W=10 N·2 m = 20 N m = 20 J,这相当于从地面举起1公斤重的物体到头部所做的功。

注意:若重量加倍,距离不变;或是重量不变,距离加倍,其所做的功皆为例题的两倍。

1.能量、储存、转换→用功作为转换方式及过程 2.对物体做功会转换成能量

动能→→→势能

 A        B

简介

即使存在力,也可能没有做功。例如,在匀速圆周运动中,向心力没有做功,因为做圆周运动的物体的动能没有发生变化。同样的,桌上的一本书,尽管桌对书有支持力,但因没有位移而没有做功。

单位

国际单位制中功的单位为焦耳(J)。焦耳被定义为用1牛顿的力对一物体使其发生1米的位移所做的机械功的大小。量纲相同的单位牛·米有时也使用,但是一般牛·米用于力矩,使其跟功和能区别开。

非国际单位制单位包括尔格、英尺·磅、千瓦时(kW•h)、大气压力、马力时(HP•h)。而由于具有相同的物理量─热能,偶尔会见到以热量热能形式表示的测量单位,如:卡路里(cal)、BTU等。

功与能

功与能息息相关,根据系统能量的守恒,内部总能量的变化等于添加的热能加上环境对系统所做的功。见热力学第一定律

只有机械能时的情况

1.保守力做功使“存”在物体中的势能释放出来,亦即保守力做功等于负的势能变

2.非保守力做功时,若有保守力做负功则优先化为势能,剩下的功才化为物体的动能,即非保守力做功等于总力学能(动能+势能)变

3.综合以上两点,一物体所受的合力包含了保守力与非保守力,非保守力使总力学能变,而保守力将之部分化为势能,二者相加,即合力做功等于动能变

根据这些公式证明功是与作用力相关的能量,所以做功是能被测量的,是一种具有物理单位的能量。

上面所讨论的做功、能量原理也适用于非机械能,例如电器和能源等,其原理是相同的。

约束力

约束力决定了系统中对象的位移,将其限制在范围内(以斜面加重力为例,当物体受到无法再伸长的紧绳约束使其不能再下滑,物体就会在斜面上)。它消除了在该方向上所有的位移,即物体平行此力的速度被约束为0,因此约束力不对系统做功

例如:用一根绳子系上一个小球做匀速圆周运动,小球会受到来自绳子,方向指向圆心的一个向心力。这个力的方向和球速度的方向垂直,所以这个力不做功(W=0)。又如桌上有一本书,施加外力会使书在桌面上移动。如果再对书施加一个垂直的力(实际上书受到的重力和支持力就属于这个力),和其欲移动之方向垂直,则此约束力(施加的垂直力)不做功。

磁场中的带电粒子受到磁力(洛伦兹力)的大小为F = qv×B,其中q为电荷,v是粒子速度,而B为磁场强度。外积结果恒垂直于两原向量,因此F⊥v。而两垂直向量的内积恒零,因此磁力做的功W = F · v = 0。磁力可改变此粒子运动的方向,但是永远无法改变运动速度(也就是动能)。

数学计算

对于一移动的物体而言,做功量/时间可以从距离/时间(即速度)来计算。因此,在任何时刻,力做功的功率(焦耳/秒、瓦),其值为力的标量积(矢量)和作用点上的速度矢量。力的标量积和速度被归类为瞬时功率。

而正如速度可能会随着时间的推移以获得更长的距离,同一条路径上的总功率也同样是作用点沿着同一条路径上之瞬时功率的时间积分的总和。

功是指质点受外力作用位移而产生的量,当质点移动时,它沿着曲线和速度在所有的时间。少量的功发生在瞬时时间能够写成:

其中是在内的瞬时功率,这些少量功的总合超过该质点运动位移所产生的功量。

其中的位移是从,计算质点位移的积分。

如果力的方向总是沿着这条线,力的大小为,那么此积分可简化为:

其中是沿着直线的位移,假设固定,且沿着此直线,则此积分可进一步简化成:

其中是质点沿着直线前进的距离。

此计算可归纳为恒定力并非延著线而是沿着质点。在此情况下内积,其中是力矢量和运动方向之间的角度。即:

一般常见的情况,施加的力和速度矢量对身体成(中央力朝下身体绕一圆圈运动),由于,所以不做功。因此可以延伸至重力对于星球在圆形轨道上运动不做功(此为理想情况,一般情况下轨道略呈椭圆形)。

此外身体作等速圆周运动受到机械外力作用时,做的功也为0,就像在一理想情况之无摩擦力的离心机中作等速圆周运动一般。

计算功在时间和力作用在一直线路径上的数值只适用在最简单的情况下,如上文所述。如果力会变化,或身体延曲线方向移动,物体可能转动甚至并非刚性物体,那么其所做的功只和作用力的角度、路径有关,并且只有部分的力平行在作用点上形成的速度才做功 (相同方向为正,反方向为负值),此处的力可以被描述为标量或是切线分量的标量。(,其中是力和速度之间的夹角)。

至于功最普遍的定义如下:力做功是其延著作用点上的路径之切线分量的标量也就是线性积分。

转矩和转动

转矩是从相等但方向相反的力作用于刚性体上两个不同的点所形成。这些力总合为零,但它会对物体影响形成转矩Τ,计算做功形成的转矩公式为:

,其中T.ω是作用在时间点δt上。这些少量的功之合大于刚性体运动轨迹所产生的功。
,此积分是计算刚体延轨迹运动与时间变化的角速度ω,可以说与运动的路径息息相关。

如果角速度矢量保持恒定的方向,那么可以写成:

,其中φ为转动角度,单位矢量S。在此情况下,功的转矩可写成:
,其中C是从φ(t1φ(t2的运动轨迹。此积分取决于φ(t)的值,因此与路径相关。

如果转矩T与角速度矢量一致,那么可写成:

而且若转矩和角速度是恒定的,那么功可写成这个形式:

A force of constant magnitude and perpendicular to the lever arm
A force of constant magnitude and perpendicular to the lever arm

此结果可以更简单的理解,如图所示。这股力将通过圆弧的距离s=rφ,所做的功即是:

,导出转矩τ=Fr,得:

以上,请注意只有转矩在角速度矢量方向的部分才有做功。

力与位移

力与位移都是矢量。功是力与位移的内积,为标量

           (1)

其中是力矢量和位移矢量的夹角

为使此式正确,力须为常矢量,路径须为一条直线。

如力随时间变化或路径不为直线,上式不再适用,此时需使用曲线积分。故功的一般公式为:

           (2)

其中

是路径
是力矢量
是位移矢量

表达式是一个非恰当微分,与路径有关,求微分后不能得到

非零力可以不做功,这一点与冲量不同。冲量是力对时间的累积。冲量是矢量,所以圆周运动时虽向心力不做功,但产生了对物体的非零冲量。

力矩

力矩所做功可由下式计算得到:

其中为力矩。

功与动能

功动能定理(The work–kinetic energy theorem)或称功能定理(The work–energy theorem)、功能原理(The work–energy principle),意指合力作用在物质上(合力做功)的功等于物质的动能变化量

合力W在质点上所做的功等于其动能的变化量,[4]

,

and 分别是质点的初速度和末速度,m则是质量。

概述

功与能的原理由牛顿第二运动定律推导,其中包括作用在质点上的合力和约束反力对质点造成的位移量。

对于匀变速直线运动的情形,推导如下式。

一般情况下的推导则如下式。

注释

  1. ^ Jammer, Max. Concepts of Force. Dover Publications, Inc. 1957. ISBN 0-486-40689-X. 
  2. ^ Tipler. 1991: 138. 
  3. ^ 3.0 3.1 Resnick, Robert and Halliday, David. Physics, Section 7-2 (Vol I and II, Combined edition). Wiley International Edition, Library of Congress Catalog Card No. 66-11527. 1966. 
  4. ^ Hugh D. Young and Roger A. Freedman. University Physics 12th. Addison-Wesley. 2008: 329. ISBN 978-0-321-50130-1. 

参考

  • Serway, Raymond A.; Jewett, John W. Physics for Scientists and Engineers 6th ed. Brooks/Cole. 2004. ISBN 0-534-40842-7. 
  • Tipler, Paul. Physics for Scientists and Engineers: Mechanics 3rd ed., extended version. W. H. Freeman. 1991. ISBN 0-87901-432-6. 
{{bottomLinkPreText}} {{bottomLinkText}}
Listen to this article