For faster navigation, this Iframe is preloading the Wikiwand page for 化学气相沉积.

化学气相沉积

维基百科,自由的百科全书

本条目存在以下问题,请协助改善本条目或在讨论页针对议题发表看法。 此条目需要补充更多来源。 (2018年11月24日)请协助补充多方面可靠来源改善这篇条目无法查证的内容可能会因为异议提出而移除。致使用者:请搜索一下条目的标题(来源搜索:"化学气相沉积"网页新闻书籍学术图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 此条目可参照英语维基百科相应条目来扩充。 (2020年9月30日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记((Translated page))标签。

化学气相沉积(英语:chemical vapor deposition,简称CVD)是一种用来产生纯度高、性能好的固态材料的化学技术。半导体产业使用此技术来成长薄膜。典型的CVD工艺是将晶圆(基底)暴露在一种或多种不同的前趋物下,在基底表面发生化学反应或/及化学分解来产生欲沉积的薄膜。反应过程中通常也会伴随地产生不同的副产品,但大多会随着气流被带走,而不会留在反应腔(reaction chamber)中。

微制程大都使用CVD技术来沉积不同形式的材料,包括单晶多晶、非晶及外延材料。这些材料有碳纤维、碳纳米纤维、纳米线纳米碳管SiO2硅锗硅碳氮化硅、氮氧化硅及各种不同的high-k介质英语High-κ dielectric等材料。CVD制程也常用来生成合成钻石

化学气相沉积的种类

一些CVD技术被广泛地使用及在文献中被提起。这些技术有不同的起始化学反应机制(如活化机制)及不同的工艺条件。

  • 以反应时的压强分类
    • 常压化学气相沉积(Atmospheric Pressure CVD,APCVD):在常压环境下的CVD工艺。
    • 低压化学气相沉积(Low-pressure CVD,LPCVD):在低压环境下的CVD工艺。降低压强可以减少不必要的气相反应,以增加晶圆上薄膜的一致性。大部分现今的CVD工艺都是使用LPCVD或UHVCVD。
    • 超高真空化学气相沉积(Ultrahigh vacuum CVD,UHVCVD:在非常低压环境下的CVD工艺。大多低于10-6 Pa (约为10-8 torr)。注:在其他领域,高真空和超高真空英语ultra-high vacuum大都是指同样的真空度,约10-7 Pa。
  • 以气相的特性分类
    • 气溶胶辅助气相沉积(Aerosol assisted CVD,AACVD):使用液体/气体的气溶胶的前驱物成长在基底上,成长速非常快。此种技术适合使用非挥发的前驱物。
    • 直接液体注入化学气相沉积(Direct liquid injection CVD,DLICVD):使用液体(液体或固体溶解在合适的溶液中)形式的前驱物。液相溶液被注入到蒸发腔里变成注入物。接着前驱物经由传统的CVD技术沉积在基底上。此技术适合使用液体或固体的前驱物。此技术可达到很多的成长速率。
  • 电浆技术(可参考电浆制程英语Plasma processing
    • 微波等离子体辅助化学气相沉积(Microwave plasma-assisted CVD,MPCVD)
    • 等离子体增强化学气相沉积法(Plasma-Enhanced CVD,PECVD):利用等离子体增加前驱物的反应速率。PECVD技术允许在低温的环境下成长,这是半导体制造中广泛使用PECVD的最重要原因。
    • 远距电浆增强化学气相沉积(Remote plasma-enhanced CVD,RPECVD):和PECVD技术很相近的技术。但晶圆不直接放在电浆放电的区域,反而放在距离电浆远一点的地方。晶圆远离电浆区域可以让制程温度降到室温。
  • 原子层化学气相气相沉积(Atomic layer CVD,ALCVD):连续沉积不同材料的晶体薄膜层。参见原子层外延(原子层沉积)。
  • 热丝化学气相沉积(Hot wire CVD,HWCVD):也称做触媒化学气相沉积(Catalytic CVD,Cat-CVD)或热灯丝化学气相沉积(Hot filament CVD,HFCVD)。使用热丝化学分解来源气体。[1]
  • 混合物理化学气相沉积(Hybrid Physical-Chemical Vapor Deposition,HPCVD):一种气相沉积技术,包含化学分解前驱气体及蒸发固体源两种技术。
  • 快速热化学气相沉积(Rapid thermal CVD, RTCVD):使用加热灯或其他方法快速加热晶圆。只对基底加热,而不是气体或腔壁。可以减少不必要的气相反应,以免产生不必要的粒子
  • 气相外延(Vapor phase epitaxy, VPE)

通常用于集成电路的沉积材料

此章节需要扩充

本节讨论通常用于集成电路的CVD工艺。不同的材料会应用于不同的环境。

多晶硅

多晶硅是从硅烷(SiH4)沉积所得到的。使用以下反应:

SiH4 → Si + 2 H2

这种反应通常使用低压化学气相沉积系统(LPCVD),使用单纯的硅烷或用70-80%的氮硅烷作为原料。在温度在600°C至650°C之间,压力为25~150帕斯卡的条件下,沉积速度在每分钟10至20纳米之间。另一种工艺使用氢为还原剂。氢气会降低增长速度,所以温度提高到850甚至1050℃进行补偿。 多晶硅的沉积可以和掺杂同时进行。即把磷,砷或者乙硼烷加入CVD反应腔。乙硼烷的会令增长率增加,但砷化氢和磷化氢会令沉积速度减小。

二氧化硅

SiH4+O2 → SiO2+2H2

氮化硅

使用以下反应:SiH4 + 4 N2O → SiO2 + 2 H2O + 4 N2.

金属

通常用于高分子聚合的沉积材料

聚对二甲苯(parylene)以及其派生物

Parylene-N的单体经过高温炉(约摄氏600-800度)裂解后会形成自由基,而最后随着带入的惰性气体沉积在低温的表面上

大多数parylenes是钝化薄膜或涂层。这意味着他们保护的设备可以防止水,化学品的侵害。这是一个重要的特点,然而在许多应用上都需要键结的其他材料在聚对二甲苯上,例如对二甲苯对二甲苯,对二甲苯表面固定催化剂或酶......。一些的反应性对二甲苯,例如:1.胺基对二甲苯(一个胺在每个重复单元,Kisco公司产品)2.一甲基胺对二甲苯(一甲基胺每个重复单元,Kisco公司产品)

一甲基胺对二甲苯比胺基对二甲苯有更大的反应性,因为它带着更强的硷基。当相邻的苯环胺组,胺基,是在稳定的共振,因此变得更加酸性,相对碱性较弱。然而[胺基对二甲苯]是更容易合成,因此它的成本较低。

参考文献

  1. ^ Schropp, R.E.I.; B. Stannowski, A.M. Brockhoff, P.A.T.T. van Veenendaal and J.K. Rath. Hot wire CVD of heterogeneous and polycrystalline silicon semiconducting thin films for application in thin film transistors and solar cells (PDF). Materials Physics and Mechanics: 73–82. [2008-03-31]. (原始内容存档 (PDF)于2020-05-13). 

外部链接

{{bottomLinkPreText}} {{bottomLinkText}}
化学气相沉积
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.