For faster navigation, this Iframe is preloading the Wikiwand page for 原子单位制.

原子单位制

部分导出单位

${\displaystyle E_{\mathrm {h} }/a_{0))$ 8.238 7225(14)×10-8 N 1044 N

简化后的量子力学与量子电动力学方程

${\displaystyle -{\frac {\hbar ^{2)){2m_{e))}\nabla ^{2}\psi (\mathbf {r} ,t)+V(\mathbf {r} )\psi (\mathbf {r} ,t)=i\hbar {\frac {\partial \psi }{\partial t))(\mathbf {r} ,t)}$.

${\displaystyle -{\frac {1}{2))\nabla ^{2}\psi (\mathbf {r} ,t)+V(\mathbf {r} )\psi (\mathbf {r} ,t)=i{\frac {\partial \psi }{\partial t))(\mathbf {r} ,t)}$.

SI单位制下，氢原子薛定谔方程的哈密顿算符为：

${\displaystyle {\hat {H))=-(({\hbar ^{2)) \over {2m_{e))}\nabla ^{2))-{1 \over {4\pi \epsilon _{0))}((e^{2)) \over {r))}$,

${\displaystyle {\hat {H))=-(({1} \over {2))\nabla ^{2))-((1} \over {r))}$.

${\displaystyle \nabla \cdot \mathbf {E} =4\pi \rho }$
${\displaystyle \nabla \cdot \mathbf {B} =0}$
${\displaystyle \nabla \times \mathbf {E} =-\alpha {\frac {\partial \mathbf {B} }{\partial t))}$
${\displaystyle \nabla \times \mathbf {B} =\alpha \left({\frac {\partial \mathbf {E} }{\partial t))+4\pi \mathbf {J} \right)}$

（磁场的原子单位的定义有多种方法。上面的麦克斯韦方程组采用了“高斯规范”，这使得平面波的电场与磁场在原子单位制下有着相同的数值，而在“洛仑兹力规范”下，因子α被吸收到磁感应强度B中。）

参考文献

• H. Shull and G. G. Hall, Atomic Units, Nature, volume 184, no. 4698, page 1559 (Nov. 14, 1959)
• G. Drake (ed.), Springer Handbook of Atomic, Molecular, and Optical Physics. Springer, 2nd ed., 2006