For faster navigation, this Iframe is preloading the Wikiwand page for 反弹道导弹.

反弹道导弹

维基百科,自由的百科全书

此条目翻译品质不佳。 (2016年10月2日)翻译者可能不熟悉中文或原文语言,也可能使用了机器翻译。请协助翻译本条目或重新编写,并注意避免翻译腔的问题。明显拙劣的翻译请改挂((d|G13))提交删除。
一次战区高空防御导弹拦截试验
一次战区高空防御导弹拦截试验

反弹道导弹是一种旨在拦截弹道导弹导弹。弹道导弹能够依照弹道飞行轨迹投射弹头,化学弹头,生物武器弹头或常规弹头。“反弹道导弹”可用来描述任何一种设计用来对付弹道导弹的导弹系统。不过,它常常特指用于那些远程,装备了核弹头,用于拦截洲际弹道导弹的导弹系统。

历史上只有两个反弹道导弹系统投入过正式使用,它们是美国的卫兵英语Safeguard Program系统和俄国的A-35反弹道导弹系统英语A-35 anti-ballistic missile system。前者使用LIM-49“斯巴达”英语LIM-49 Spartan短跑英语Sprint (missile)两种导弹进行拦截,而后者使用Galosh导弹英语Galosh (missile)进行拦截。每一个导弹装备了核弹头。卫兵系统只服役了很短一段时间;俄国的系统进行了改进,现在仍然可以使用,新的名称是A-135,使用Gorgon英语Gorgon (missile)Gazelle英语Gazelle (missile)两种导弹。不过,美国的陆基中段防御系统(Ground-Based Midcourse Defense简称GMD,旧称国家导弹防御系统NMD)最近已经具备了初步的作战能力。它不使用火药,发射的是动能弹丸

反弹道导弹的发展

二战至1950年代

第二次世界大战德国研制出V1导弹和V-2导弹,用于对付盟军。这种当时的秘密武器,虽然技术还不成熟,命中精度和杀伤力不大,但是他们的问世和使用,开创了世界上最早的导弹战。

战后,美军开始研究反导导弹。不过1950年代后期研究的重点转向了苏联方面。苏联的首颗人造卫星在1957年10月4日发射,促使美国优先考虑防范苏联的远程炸弹。

第一个实验性的反弹道导弹系统是苏联的V-1000系统(A-35反导系统的一部分),紧接着是美国的宙斯系统。宙斯后来被证明毫无用处,于是开发了哨兵系统。

用来击落弹道导弹的导弹,一般使用核战斗部,利用核弹强大的爆炸高热和放射线使目标失效,并且可加大有效杀伤半径,以弥补高速飞行下过大的误差。由于美苏签定了反导导弹条约,双方只能在首都附近布署,数量不足使其失去研发的意义,当年的反导导弹已经停止研发。但是由于美国展开了战术导弹防御(TMD)与国家导弹防御(NMD)的计划,新一波的反导导弹研发风潮也有展开的可能。而现在的反导导弹发展趋势,是使用较没有核污染危险的传统战斗部,以近距离爆炸的破片,或是以直接撞击的方式击毁目标。

在早期的反弹道导弹研究中也有其它国家的参与。例如加拿大CARDE计划英语DRDC Valcartier,主要是研究反弹道导弹系统存在的问题。

1960年代至1970年代

宙斯、哨兵、卫兵

美国的宙斯系统是由两枚导弹、两个雷达及其相关的控制系统组成的。一枚是升级之后的宙斯导弹(后来改称LIM-49斯巴达人导弹英语LIM-49 Spartan),射程更远,且装备了500万吨级的弹头,用以在大气层外释放大量的X射线来摧毁弹头。第二枚是一枚中短程导弹,名为斯普林特英语Sprint (missile),具有非常高的加速度,以拦截那些躲过了斯巴达导弹的落网弹头。斯普林特是一种速度非常快的导弹(可以在4秒钟内加速到13000公里/时 (超过10马赫),平均加速度达到100g),具有一个小型的W66增强辐射型弹头。

新的斯巴达导弹也改变了部署方式。以前的拦截系统只能在城市附近部署,而斯巴达导弹的拦截范围是数百英里,允许只要有一个基地,就可以保护整个美国大陆,这就是哨兵系统的原理。不过当证明这种发法在经济上是不可行的之后,一种更小型的反导部署——卫兵系统英语Safeguard Program就提了出来。卫兵系统的原理与哨兵系统相同。只是卫兵系统只保护美国的洲际弹道导弹基地免受攻击,从理论上来看,这也确保一旦美国需要,可以对攻击进行回应,一个活生生的“玉石俱焚”原则的例子。

苏联的反弹道导弹系统

苏联于1961年3月使用V-1000导弹英语V-1000进行反导拦截试验,V-1000导弹从1500公里之外发射,成功的拦截了R-12弹道导弹的弹头。尽管如此,V-1000依然被认为不够可靠,取而代之的是带核弹头的反弹道导弹。

除了V-1000外,苏联另一个投入使用的反弹道导弹系统是A-35反导系统。该系统设计使用Galosh导弹在外太空对来袭导弹进行拦截,并于二十世纪70年代初在莫斯科周边布置了4处。

根据1972年签署的反导条约的规定,该系统从最初计划的大规模部署,缩减为在莫斯科周边只部署了2处。80年代该系统被A-135反弹道导弹系统取代。

防御分导式多弹头带来的问题

分导式多弹头示意图。图中LGM-118A和平守护者导弹正在进行实验。八颗皆来自同一枚导弹,若使用实弹,每一条线代表25倍广岛小男孩核弹的爆炸威力
分导式多弹头示意图。图中LGM-118A和平守护者导弹正在进行实验。八颗皆来自同一枚导弹,若使用实弹,每一条线代表25倍广岛小男孩核弹的爆炸威力

反导系统最初设计用来防御单弹头的洲际导弹。随着火箭尺寸的增加,大弹头的洲际导弹的造价将远高于拦截它的导弹。在军备竞赛中,防守的一方将会获胜。

不过自从使用了分导式多弹头之后,情况发生了戏剧性的变化。忽然间每一次进攻不是只有一枚弹头,而是多枚弹头了。防守方对每一个弹头都需要一枚拦截导弹,这就导致了防守方的花费比进攻方多了许多。

1972年的反弹道导弹条约

众多的技术、经济、政治原因,促使美苏两国在1972年5月26日签署了反弹道导弹条约。这一条约限制发展战略(非战术)反弹道导弹。

根据反导条约和1974年的修订版本,苏联与美国可以各自选择两处分散的地点,各部署100枚反弹道导弹防御以重要目标。苏联部署了A-35反弹道导弹系统来保护莫斯科。美国部署了卫兵系统保护北达科他州的圣福克斯空军基地。

2002年6月13日,美国宣布将退出反导条约,随后宣布研发之前受到双边条约禁止的导弹防御体系。美国解释这一举动是因为“《反弹道导弹条约》妨碍了我们政府寻求保护民众的新途径所做的努力,阻碍了保护民众免遭恐怖分子和流氓国家的导弹袭击的努力。”[1]

1980年代反弹道导弹的发展和波斯湾战争

雷根时代的星际大战计划,以及在各种能量束型武器的研究,为反导技术带来的新的发展。

星球大战计划极具野心,能够防御苏联庞大的洲际导弹的进攻。其核心内容是:以各种手段攻击敌方的外太空的洲际战略导弹和外太空航天器,以防止敌对国家对美国及其盟国发动的核打击。其技术手段包括在外太空和地面部署高能定向武器(如微波、激光(激光)、高能粒子束、电磁动能武器等)或常规打击武器,在敌方战略导弹来袭的各个阶段进行多层次的拦截。

由于系统计划的费用昂贵和技术难度大,许多计划中的项目,最终无限期延长甚至终止。加上苏联后来的解体。美国在已经花费了近千亿美元的费用后,于20世纪90年代宣布中止“星球大战计划”。

爱国者导弹是第一个实际部署的战术反导系统,一开始它只是用来拦截飞机,后来的改良型才是用来做反导导弹的,这也导致它的使用具有一定的局限性。在1991年的海湾战争中它被用来拦截伊拉克的飞毛腿导弹。战后分析显示,爱国者导弹的实际效果远远不及预想,因为它的雷达和控制系统无法准确判断飞毛腿导弹重返大气层时哪个是弹头,哪个是碎片。

1990年代后海湾战争时期反弹道导弹的发展

战术反导的发展

星球大战计划

国家导弹防御系统

拥有反导能力的国家

 美国

美国多年意图打造一张严密的反导网,透过在世界各地的盟国基地上建立设施,来确保美国绝对安全。整个大计划针对洲际导弹三个阶段都做出拦截机会,透过多层式拦截提高几率。相对俄制战略导弹防御则是以“地区”作为防御目标,主要的例子为A-135反导导弹系统,他只针对莫斯科地区做为防御,等于只有下降段防御能力。

本计划于研发阶段就将目标放在针对中型国家的简易洲际导弹做防御,因为研发结论认为核大国间的全面战争中数百千枚的导弹同时齐射,且都是有诱饵或干扰能力的高科技战斗部,那种情境下任何防御系统都没有意义,也没有国家能负担那种系统,也因此该系统的有效性和一些目标前提假设是被受争论的,在克林顿执政时期陆续进行了一些测试但是并没有增加预算。克林顿曾于2000年9月5日公开支持本系统,他说:“该系统如果完美运作,可以让我们在复杂的全球维和行动中有额外的战略空间。”[2]

进入21世纪后各种美国反导技术的部属更多带来一种心理效果和国际政治效果,在别国附近部属前推的反导装置或是贩卖给对方敌手一些反导武器,常作为外交筹码使用,同时纳入美国反导防御计划对于当地亲美政治人物有政治上的宣传效果,能给予亲美的民众一种信心与说词,即使该系统对于本国其实没有太多防御力主要是替美国本土做防御,但多数不理解军事科技细节的民众还是能产生心理效应。

美国国家导弹防御署标志
美国国家导弹防御署标志
美国的YAL-1机载激光系统是先发制人的上升段防御主力,然技术问题造成没有实用化。
美国的YAL-1机载激光系统是先发制人的上升段防御主力,然技术问题造成没有实用化。
导弹阶段 上升段 中段 下降段
美国计划 战区导弹防御系统(TMD) 星战计划国家导弹防御系统(NMD)
陆基中段防御系统
战术导弹防御
内容 1993年提出一种前沿抵近部属于潜在敌国的上升段侦测与拦截系统,防卫目标为速度约3公里/秒的目标。[3] 已经飞出大气层外目标速度约7公里/秒的洲际导弹,中段拦截计划美国有较长时间研制,最初提出的星战计划未能实行,现状演变为依赖地面雷达与海面宙斯盾系统制导发射的拦截弹。 防卫目标为短程战术导弹或是已经逼近目标下降中的洲际导弹,美国以爱国者导弹作为最后工具。
现有工具 萨德系统(THAAD) 陆基中段防御系统
海基标准三型导弹
萨德系统
陆基爱国者导弹
海基标准六型导弹

 俄罗斯

俄罗斯在80年代时在莫斯科周围部署A-135反弹道导弹系统,A-135导弹装备有核弹头,但由于资金缺乏,维护不当等原因,正逐步丧失作战能力。S-300、安泰-2500、S-400S-500防空导弹具有一定的反导能力。

 以色列

一枚箭-2式反导导弹正在发射
一枚箭-2式反导导弹正在发射

以色列的箭式战术弹道导弹防御系统是以色列和美国联合研制的。[4]

整个系统的研制和投入使用已经经历了4个阶段:

  • 1986-1988年为第一阶段,主要研制了试验型的箭-1导弹系统。
  • 1991年开始第二阶段,研制了更小尺寸、重量更轻的箭-2导弹系统。
  • 1999年开始第三阶段,开始全面实验可供部署使用的箭式战术弹道导弹防御系统,包括反导导弹、发射装置、地面雷达等。
  • 2003年开始第四阶段,以色列在这一阶段部署了两套试验性的箭-2反导系统,旨在进一步改进系统性能。[5]

 日本

日本感受到弹道导弹威胁的时间为1998年北韩导弹试验之后,大浦洞1号导弹飞越日本本土的事迹让日本国内感受到导弹威胁确实存在。除采购爱国者PAC-3防空导弹外,也和美国合作开发使用宙斯盾战斗系统为作战核心的海基反导导弹系统-标准三型导弹。标准三型在2007年12月通过测试,并且在金刚级护卫舰上服役;在搜索设备部分,日本目前在青森设置一台战区高空防御导弹所使用的AN/TPY-2长程X波段反导雷达,未来将在京都配置第二套相同系统,提高日本对弹道导弹的搜索能力。

 印度

印度在反导领域的努力很活跃,其反导技术主要依靠了自身的发展,并整合与他国合作研发的雷达。

2006年11月27日,进行的大地防空演习中(Prithvi Air Defence Exercise,PADE)一枚拦截火箭成功的在50公里的上空击中了弹道导弹目标[6]

2007年12月6日,一枚印度自主研制的先进防空导弹(Advanced Air Defence (AAD) missile)成功地进行了导弹拦截试验,在15公里高空成功拦截了来袭导弹[7]

 中华人民共和国

中国早期便开始反击系列反导导弹640工程计划累积技术,中间研发过各种技术有成有败,在2007年1月进行一次反导试验,摧毁了一枚超过使用期限的报废的风云-1C气象卫星

2015年10月30日,动能-3反卫星导弹试验[8]。2016年12月15日,即将进行反卫星导弹测试[8]

陆基中段反导试验

2010年1月11日(官方第一次陆基中段拦截试验),中国进行了一次陆基中段反导拦截技术试验,宣布试验达到了预期目的,并称这一试验是防御性的,不针对任何国家[9]

2012年9月11日进行了一次陆基中段反导拦截技术试验,并宣布“达到了预期目的”。

2013年1月27日(官方第二次陆基中段拦截试验)又进行了陆基中段反导拦截试验,国防部新闻事务局宣布:试验达到了预期目的;这一试验是防御性的,不针对任何国家[10]

2014年7月23日(官方第三次陆基反导拦截试验)宣布实施一次陆基反导技术实验[11];中国国防部证实了这次拦截试验,但未说明是“哪个阶段的拦截”[12]

2016年9月23日,媒体报道了中国可能在20日进行了反导拦截试验和弹道导弹试射, “而9月22日试验的靶场则可能是新疆自治区境内某靶场,从发射场到靶场间的距离约为1500公里。从这个信息推断,这可能是一次弹道导弹高弹道飞行试验。”[13]

2017年5月29日,据法国《东方钟摆》网站报道:根据网上公开的禁航通告,中国可能当天从太原向西发射一枚导弹,飞行距离约2500公里,这个方向的试射或许就是又一次库尔勒反导试验场进行的反导试验;分析评论,这是中国在以实际行动回应美国于5月30日,GMD系统进行的代号FTG-15的拦截试验,此次试验取得了成功[14]

2017年7月23日,“我国西部地区有人拍到空中疑似导弹残骸的照片,可能又进行了一次反导试验。”[15]同时,荷兰航空飞行员在喜马拉雅山上飞行时,拍摄到了疑似近日中国反导测试的影像[16]

2018年2月6日(官方第四次陆基中段拦截试验),《中新网》发布报道,并援引中国国防部新闻局官方微博消息,表示“2018年2月5日,中国在境内进行了一次陆基中段反导拦截技术试验[17]。”媒体分析:此次拦截实验的主要目的,是检测拦截弹的“大气层外命中精度”[12][18]。美国《外交学者》杂志网站刊登文章称,此次中国使用的是“动能-3”拦截弹,拦截速度高达27马赫[19],摧毁的靶弹则是东风-21型中程弹道导弹[20]

2018年4月27日晚,北京、南京、呼和浩特、太原、天津、青岛等地的夜空划过一道奇异的无声光束,像一个巨大的飞行手电,被一些网友称为“天外来客”,疑似进行了一次反导试验[21],另一种可能性是进行了一次高超音速武器的飞行试验[22]

2018年10月11日晚,内蒙古、山西、呼和浩特、北京等地的夜空划过一道奇异的无声光束,被一些网友称为“亮云”,疑似进行了一次反导试验。一些媒体报道称为不明飞行物[23]

2021年2月4日(官方第五次陆基中段拦截试验),中国国防部发布声明,表示其在境内进行了一次陆基中段反导拦截技术试验[24],并表示“试验达到了预期目的。这一试验是防御性的,不针对任何国家[25]”。

2022年6月19日美国战略司令部证实[26],美国海军“俄亥俄”级战略核潜艇在加利福尼亚州以西海域,成功发射4枚三叉戟II D5洲际弹道导弹,导弹准确命中太平洋关岛地区的目标[27];同日晚(官方第六次陆基中段拦截试验),据中国国防部消息[28]:中国在境内进行了一次陆基中段反导拦截技术试验,试验达到了预期目的,国防部表示该试验是防御性的,不针对任何国家[29]

动能末端反导试验

2011年5月15日[30]进行过一次内容机密的实验。2017年进行的红旗-9防空导弹试验证实其有短程末段反导能力,类似爱国者导弹的角色,至此官方透漏了具有中段和末段反导工具[31]

 中华民国

美国爱国者三型与国造天弓三型。天弓三型国家中山科学研究院自行研制之第三代区域防空系统,弓三系统亦有拦截战术弹道导弹能力。

反导技术的发展

 中华人民共和国

1964年2月,毛泽东会见一批科学家时说:“有矛必有盾,搞少数人有饭吃,专门研究这个问题,五年不行,十年;十年不行,十五年。总是要搞出来的[32]。”这是中华人民共和国建国后首次明确提出防御战略设想。

中国反导系统仍然停留在研究层面上,并未投入实际使用。故官方并没有明确现在中国所具有的反导能力。

因存在一本《863先进防御技术通讯》的刊物,故可认为863计划中包含反导的相关研究。

2010年1月11日,中华人民共和国在境内进行了首次中段反弹道导弹试验,并取得了成功,之后数年红旗-19大气层内外反导导弹的一些资料开始披露。

 日本

2007年3月29日,日本在东京北部的航空自卫队基地埼玉县入间空军基地部署爱国者-3型导弹[33]

2007年11月29日,日本在东京东部千叶县习志野空军基地部署了第二套弹道导弹拦截系统[34]

2007年12月18日,日本防卫省宣布其海上自卫队金刚级驱逐舰当天在夏威夷考爱岛附近海域试射了标准-3型(SM-3)海基拦截导弹,并成功的击中假设的模拟导弹[35]

陆基反导系统主要用于低空拦截,海基反导系统主要用于高空拦截,他们共同构成了日本的主要导弹防御体系。

参考文献

  1. ^ President Discusses National Missile Defense. [2009-11-21]. (原始内容存档于2009-10-19). 
  2. ^ Shanker, Tom (8 August 2012). "U.S. and Gulf Allies Pursue a Missile Shield Against Iranian Attack". The New York Times. Retrieved 17 September 2012.
  3. ^ 美国导弹防御系统有用吗?. [2017-07-07]. (原始内容存档于2016-03-04). 
  4. ^ Israeli-United States Relations. [2008-08-23]. (原始内容存档于2002-11-04). 
  5. ^ 以色列箭-2战区弹道导弹防卫系统. [2008-08-24]. (原始内容存档于2008-05-11). 
  6. ^ Prithvi Mission Milestone in Missile Defence页面存档备份,存于互联网档案馆).
  7. ^ INDIA successfully conducts interceptor supersonic missile test. [2008-08-23]. (原始内容存档于2015-10-15). 
  8. ^ 8.0 8.1 美称中国或在3天后发射DN3反卫星导弹 可击中美卫星. [2016-12-12]. (原始内容存档于2016-12-13). 
  9. ^ 中国在境内进行了一次陆基中段反导拦截技术试验, [2010-01-12], (原始内容存档于2010-01-16) 
  10. ^ 新华社2013年1月27日电:《中国在境内进行陆基中段反导拦截技术试验》. [2015年11月15日]. (原始内容存档于2015年11月17日). 
  11. ^ 陸基中段反導彈攔截 向前一步, [2014-07-31], (原始内容存档于2014-07-27) 
  12. ^ 12.0 12.1 中国第三次进行陆基中段反导 检验大气层外命中精度. [2018-02-06]. (原始内容存档于2018-02-06). 
  13. ^ 中国9月20日疑似在新疆完成最新一次反导拦截试验. [2016-10-02]. (原始内容存档于2016-09-28). 
  14. ^ 法媒称中国军队本周疑似进行最新一次反导试验. [2017-06-03]. (原始内容存档于2017-06-02). 
  15. ^ 中国西部疑似进行反导试验!疑现导弹残骸痕迹. [2017-07-24]. (原始内容存档于2017-07-27). 
  16. ^ 中国或在西北反导试验:外国的民航飞行员见证. [2017-07-27]. (原始内容存档于2017-07-29). 
  17. ^ 国防部:中国成功进行陆基中段反导拦截技术试验. [2018-02-06]. (原始内容存档于2018-02-07). 
  18. ^ 中国反导试验有何意义:将进入实用阶段 技术已超俄. [2018-02-06]. (原始内容存档于2018-02-06). 
  19. ^ 中国掌握拦截27马赫武器技术, 美怒称这是要废掉高超音速武器. [2018-05-30]. (原始内容存档于2018-12-14). 
  20. ^ 中国首次公开反导试验?东风21当靶弹美专家直言技术先进. [2018-05-30]. (原始内容存档于2018-02-23). 
  21. ^ 中国多地出现诡异“天外来客” 或是测试超级杀手锏. [2018-04-28]. (原始内容存档于2018-04-28). 
  22. ^ 北京等多地突现奇异光束 疑为新型飞行器测试(视频). [2018-04-28]. (原始内容存档于2018-04-28). 
  23. ^ 北京等多地夜空现“不明飞行物”!. (原始内容存档于2018-10-12). 
  24. ^ 中国成功实施陆基中段反导拦截技术试验. 中国新闻网. [2021-02-04]. (原始内容存档于2021-02-13) (中文(简体)及中文(中国大陆)). 
  25. ^ 权威发布丨中国成功实施陆基中段反导拦截技术试验. [2021-02-10]. (原始内容存档于2021-02-04). 
  26. ^ 中國測試「反導彈攔截技術」 美國以三叉戟洲際彈道飛彈回應:連發4枚. [2022-06-22]. (原始内容存档于2022-06-24). 
  27. ^ 美军发射4枚洲际核导弹 跨越几乎整个太平洋(组图)
  28. ^ 中国成功实施陆基中段反导拦截技术试验. [2022-06-19]. (原始内容存档于2022-06-20). 
  29. ^ 国防部发布. 中国成功实施陆基中段反导拦截技术试验. 微信公众平台. 2022-06-19 [2022-06-19]. (原始内容存档于2022-06-19). 
  30. ^ 官方爆料!中国2011年就成功进行末段反导试验. [2016-10-23]. (原始内容存档于2016-10-24). 
  31. ^ 中国红旗9导弹夜间反导拦截画面. [2017-07-07]. (原始内容存档于2017-08-30). 
  32. ^ 与时代同行大力弘扬院士群体的奉献精神——在2005年《院士通讯》特约通讯员座谈会上的讲话. [2008-08-25]. (原始内容存档于2007-11-09). 
  33. ^ 日本在七大都市圈外围布防反导系统[永久失效链接]
  34. ^ 日本部署第二套导弹拦截系统 距东京25公里. [2008-08-25]. (原始内容存档于2007-12-25). 
  35. ^ 日本反导试验为何选址美国?进一步强化军事关系. [2008-08-25]. (原始内容存档于2008-10-08). 

参考

{{bottomLinkPreText}} {{bottomLinkText}}
反弹道导弹
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.