对偶空间 - Wikiwand
For faster navigation, this Iframe is preloading the Wikiwand page for 对偶空间.

对偶空间

维基百科,自由的百科全书

线性代数 A = [ 1 2 3 4 ] {\displaystyle \mathbf {A} ={\begin{bmatrix}1&2\\3&4\end{bmatrix))} 向量 · 向量空间  · 行列式  · 矩阵 向量 标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积 矩阵与行列式 矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 · 线性空间与线性变换 线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 · 查论编

数学里,任何向量空间V都有其对应的对偶向量空间(或简称为对偶空间),由V线性泛函组成。此对偶空间俱有一般向量空间的结构,像是向量加法及标量乘法。由此定义的对偶空间也可称之为代数对偶空间。在拓扑向量空间的情况下,由连续的线性泛函组成的对偶空间则称之为连续对偶空间。

对偶空间是 行向量()与列向量()的关系的抽象化。这个结构能够在无限维度空间进行并为测度,分布希尔伯特空间提供重要的观点。对偶空间的应用是泛函分析理论的特征。傅立叶变换亦内蕴对偶空间的概念。

此条目需要精通或熟悉相关主题的编者参与及协助编辑。请邀请适合的人士改善本条目。更多的细节与详情请参见讨论页。

代数对偶空间

为 在上的向量空间,定义其对偶空间为由的所有线性函数的集合。 即是的标量线性变换。本身是向量空间,并且对所有中的、所有中的、所有中的满足以下加法及标量乘法:

张量的语言中,的元素被称为反变或逆变(contravariant)向量而V*的元素被称为共变或协变(covariant)向量、“余向量”或“同向量”(co-vectors),“线性型”或“一形”(one-form)。

例子

如果是有限维的,的维度和V的维度便相等; 如果的基,便应该有相对基,记作:

如果是平面几何向量的空间,便是一组组的平行线。我们能从平行线应用到任何向量产生一个标量。

如果是无限维度,不能产生的基;而的维度比的大。

例如空间的元素是实数列,其拥有很多非零数字。的双对空间是所有实数数列的空间。这些数列被用于元素而产生

线性映射的转置

是线性映射。 转置定义为

   ∀ φ ∈ W*.

对任何向量空间,定义为所有从的线性映射组成的向量空间。产生从单射;这是个同构当且仅当是有限维的。

若 线性映射f表示作其对的基之矩阵 ,则表示作其对的对偶基之转置矩阵。 若是另一线性映射,则

范畴论的语言里,为任何向量空间取对偶为任何线性映射取转置都是向量空间范畴逆变函子

双线性乘积及对偶空间

正如所见,如果拥有有限维度,是同构的,但是该同构并不自然;它是依赖于我们开始所用的的基。事实上,任意同构上定义了一个唯一的非退化的双线性型:

相反地从每个在有限维空间中的非退化的双线性积可以产生由映射到的同构。

到双对偶空间内的单射

存在一个由到其双对偶的自然映射,定义为

常是单射;当且仅当的维数有限时,是个同构。

连续对偶空间

处理拓扑向量空间时,我们一般仅对该空间射到其基域的连续线性泛函感兴趣。由此导致连续对偶空间之概念,此乃其代数对偶空间之一子空间。向量空间之连续对偶记作′。此脉络下可迳称连续对偶为对偶

线性赋范向量空间(如一巴拿赫空间或一希尔伯特空间)之连续对偶产生一线性赋范向量空间。对一上之连续线性泛函,其范数定义为

此法变一连续对偶为一线性赋范向量空间,实为巴拿赫空间。

例子

对任意有限维之线性赋范向量空间拓扑向量空间,正如欧几里得空间,其连续与代数对偶不二。

为实数,并考虑所有序列构成之巴拿赫空间l p,使其范数

有限。以定义其连续对偶遂自然等同于:给定一元素中相应元素为序列 ,其中谓第项为1且余项皆0之序列。反之,给定一元素上相应之连续线性泛函定为(对一切,见Hölder不等式)。

准此,之连续对偶亦自然同构于。再者,巴拿赫空间(赋以上确界范数之全体收敛序列)及中收敛至零者)之连续对偶皆自然同构于

进一步的性质

希尔伯特空间,则其连续对偶亦然,并反同构于;此盖黎兹表示定理所明,物理学人赖以描述量子力学狄拉克符号肇端乎是。

类似双重代数对偶,对连续线性算子亦有连续单射,此映射实为等距同构,即 对一切皆真。使双射之空间称自反空间

连续对偶赋以一新拓扑,名弱拓扑。

V之对偶可分,则亦可分。反之则不然;试取空间,其对偶不可分。

引用

{{bottomLinkPreText}} {{bottomLinkText}}
对偶空间
Listen to this article