射影线性群 - Wikiwand
For faster navigation, this Iframe is preloading the Wikiwand page for 射影线性群.

射影线性群

维基百科,自由的百科全书

群论 群 基本概念 子群 · 正规子群 · 商群 · 群同态 · 像 · (半)直积 · 直和单群 · 有限群 · 无限群 · 拓扑群 · 群概形 · 循环群 · 幂零群 · 可解群 · 圈积 离散群 有限单群分类 循环群 Zn 交错群 An 散在群马蒂厄群 M11..12,M22..24康威群 Co1..3 扬科群 J1..4 费歇尔群 F22..24子怪兽群 B怪兽群 M 其他有限群 对称群, Sn 二面体群, Dn 无限群 整数, Z 模群, PSL(2,Z) 和 SL(2,Z) 连续群 李群一般线性群 GL(n)特殊线性群 SL(n)正交群 O(n)特殊正交群 SO(n)酉群 U(n)特殊酉群 SU(n)辛群 Sp(n) G2 F4 E6 E7 E8 劳仑兹群庞加莱群 无限维群 共形群微分同胚群 环路群 量子群 O(∞) SU(∞) Sp(∞) 代数群 椭圆曲线线性代数群(英语:Linear algebraic group)阿贝尔簇(英语:Abelian variety) 查论编

射影线性群代数学群论中的一类的称呼。射影线性群也叫射影一般线性群(一般记作 PGL),是某个系数域为向量空间V上的一般线性群射影空间 P(V) 上诱导的群作用。具体来说,射影线性群是商群

其中的V上的一般线性群,而是由V上的所有数乘变换构成的子群[1]。之所以在中约去,是因为它们在射影空间上的作用是平凡的(所以构成群作用的)。 有时也被记作 ,因为它是一般线性群的中心

与射影线性群类似的还有射影特殊线性群,一般记作PSL。它的定义与射影线性群相似,只不过不是在一般线性群而是在特殊线性群上。

其中的V上的特殊线性群,而中的子群(即行列式等于1的数乘变换构成的子群)[1]。显然 的中心。若n 维空间),则 同构于由n单位根构成的群。

射影线性群与射影特殊线性群都是群论和几何中最常研究的群,即所谓的“经典群”。射影线性群中的元素称为射影线性变换n 维空间),那么这个射影线性群也记作

当且仅当 中每一个元素的n都在 中,例如在 代数封闭(比如是复数域 )的时候,射影线性群与射影特殊线性群等同。。但是系数域为实数的时候,就有[2]。几何的解释是:实射影直线是有向的,而实射影特殊线性群只包括保持定向的变换。

射影线性群与射影特殊线性群也可以在上定义,一个重要的例子是模群

参考来源

  1. ^ 1.0 1.1 Onorato Timothy O'Meara, Conference Board of the Mathematical Sciences. Lectures on linear groups. American Mathematical Soc. 1974. ISBN 9780821816721. 
  2. ^ Gareth A. Jones and David Silverman. (1987) Complex functions: an algebraic and geometric viewpoint. Cambridge UP. Discussion of PSL and PGL on page 20 in google books
{{bottomLinkPreText}} {{bottomLinkText}}
射影线性群
Listen to this article