# 斯里尼瓦瑟·拉马努金

## 维基百科，自由的百科全书

Srinivasa Ramanujan

## 生平

### 在印度的成年阶段

${\displaystyle {\sqrt {\phi +2))-\phi ={\cfrac {e^{-{\frac {2\pi }{5)))){1+{\cfrac {e^{-2\pi )){1+{\cfrac {e^{-4\pi )){1+{\cfrac {e^{-6\pi )){1+\,\cdots ))))))))=0.2840...}$

## 数学成就

${\displaystyle {\frac {1}{\pi ))={\frac {2{\sqrt {2))}{9801))\sum _{k=0}^{\infty }{\frac {(4k)!(1103+26390k)}{(k!)^{4}396^{4k))))$

${\displaystyle e^{\pi {\sqrt {58))}=396^{4}-104.00000017...}$

${\displaystyle {\frac {1}{\left(1+2\sum _{n=1}^{\infty }{\frac {\cos n\theta }{\cosh n\pi ))\right)^{2))}+{\frac {1}{\left(1+2\sum _{n=1}^{\infty }{\frac {\cosh n\theta }{\cosh n\pi ))\right)^{2))}={\frac {2\Gamma ^{4}\left({\frac {3}{4))\right)}{\pi ))}$

## 延伸阅读

• Collected Papers of Srinivasa Ramanujan ISBN 0-8218-2076-1
• The Man Who Knew Infinity: A Life of the Genius Ramanujan by Robert Kanigel ISBN 0-671-75061-5（中译本：《知无涯者：拉马努金传》；罗伯特‧卡尼盖尔著；胡乐士、齐民友译；上海科技教育出版社；2002）

## 参考资料

• An overview of Ramanujan's notebooks by Bruce C. Berndt, in Charlemagne and His Heritage: 1200 Years of Civilization and Science in Europe， Volume 2: Mathematical Arts, P. L. Butzer, H. Th. Jongen, and W. Oberschelp, editors, Brepols, Turnhout, 1998, pp. 119-146，（22 pg. pdf file页面存档备份，存于互联网档案馆））
• Modern Mathematicians， Harry Henderson, Facts on File Inc., 1996

## 外部链接

1. ^ Carr, Avery. Ramanujan’s Taxicab Number. AMS Grad Blog. 2013-08-15 [2019-08-30]. （原始内容存档于2019-08-30） （美国英语）.