# 标准摩尔熵

## 计算

${\displaystyle S_{T}=\int _{0}^{T}{\frac {C_{P}{\mbox{(s)))}{T))dT=\int _{0}^{T}C_{P}{\mbox{(s)))d{\mbox{ln))T}$

${\displaystyle S^{\circ }=\int _{0}^{298.15}{\frac {C_{P}{\mbox{(s)))}{T))dT}$

0 K至298.15 K之间存在相变，例如发生熔化的情况下，需要加上熔化熵${\displaystyle \Delta S_{fus}={\frac {\Delta H_{fus)){T_{fus))))$

${\displaystyle S^{\circ }=\int _{0}^{T_{fus)){\frac {C_{P}{\mbox{(s)))}{T))dT+{\frac {\Delta H_{fus)){T_{fus))}+\int _{T_{fus))^{298.15}{\frac {C_{P}{\mbox{(l)))}{T))dT}$

${\displaystyle S^{\circ }=\int _{0}^{T_{fus)){\frac {C_{P}{\mbox{(s)))}{T))dT+{\frac {\Delta H_{fus)){T_{fus))}+\int _{T_{fus))^{T_{vap)){\frac {C_{P}{\mbox{(l)))}{T))dT+{\frac {\Delta H_{vap)){T_{vap))}+\int _{T_{vap))^{298.15}{\frac {C_{P}{\mbox{(g)))}{T))dT}$

Ne(g) 146.328

## 参考文献

1. ^ D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Churney, R.I. Nuttal, K.L. Churney and R.I. Nuttal, The NBS tables of chemical thermodynamics properties, J. Phys. Chem. Ref. Data 11 Suppl. 2 (1982).

## 参见

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.

Back to homepage

Please click Allow in the top-left corner,
then click Install Now in the dialog
then click Install
then click Install

#### Install Wikiwand

Install on Chrome Install on Firefox

#### Enjoying Wikiwand?

Share on Gmail Share on Facebook Share on Twitter Share on Buffer