楔形数 - Wikiwand
For faster navigation, this Iframe is preloading the Wikiwand page for 楔形数.

楔形数

维基百科,自由的百科全书

此条目需要扩充。 (2013年2月14日)请协助改善这篇条目,更进一步的信息可能会在讨论页或扩充请求中找到。请在扩充条目后将此模板移除。

楔形数指可以表示成三个不同素数的积的正整数。将任何楔形数带入默比乌斯函数,结果都得-1.

注意以上的定义比要求一个数只含有三个不同的素数因子更严格。比如60 = 22 × 3 × 5只有3个素数因子,但它不是楔形数,又比如44 = 22 × 11,是三个素数的积,但它不是楔形数。

所有的楔形数都是无平方数约数的数

楔形数的平方有27个约数,立方有64个约数,以此类推。

所有的楔形数都有刚好8个因数。如果把一个楔形数表示为,这里pqr是不同的素数因子,那么n的约数的集表示为:

最小的一些楔形数为:3042667078102105110114130138154165170174182...(OEIS中的数列A007304

目前已知最大的楔形数是(282,589,933 − 1)×(277,232,917 − 1)×(274,207,281 − 1),即三个已知最大素数最大素数的积。

外部链接

{{bottomLinkPreText}} {{bottomLinkText}}
楔形数
Listen to this article