# 狄拉克符号

## 矩阵表示

$|\psi \rangle ={\begin{pmatrix}\psi _{1}\\\psi _{2}\\\psi _{3}\\\psi _{4}\\\vdots \\\psi _{N}\\\end{pmatrix))$ $\langle \psi |={\begin{pmatrix}\psi _{1}^{*},&\psi _{2}^{*},&\psi _{3}^{*},&\psi _{4}^{*},&\cdots ,&\psi _{N}^{*}\end{pmatrix))$ ## 性质

• 给定任何左矢$\langle \phi |$ 、右矢$|\psi _{1}\rangle$ 以及$|\psi _{2}\rangle$ ，还有复数c1c2，则既然左矢是线性泛函，根据线性泛函的加法与标量乘法的定义，
$\langle \phi |\;{\bigg (}c_{1}|\psi _{1}\rangle +c_{2}|\psi _{2}\rangle {\bigg )}=c_{1}\langle \phi |\psi _{1}\rangle +c_{2}\langle \phi |\psi _{2}\rangle$ • 给定任何右矢$|\psi \rangle$ 、左矢$\langle \phi _{1}|$ 以及$\langle \phi _{2}|$ ，还有复数c1c2，则既然右矢是线性泛函
${\bigg (}c_{1}\langle \phi _{1}|+c_{2}\langle \phi _{2}|{\bigg )}\;|\psi \rangle =c_{1}\langle \phi _{1}|\psi \rangle +c_{2}\langle \phi _{2}|\psi \rangle$ • 给定任何右矢$|\psi _{1}\rangle$ $|\psi _{2}\rangle$ ，还有复数c1c2，根据内积的性质（其中c*代表c的复数共轭），
$c_{1}|\psi _{1}\rangle +c_{2}|\psi _{2}\rangle$ $c_{1}^{*}\langle \psi _{1}|+c_{2}^{*}\langle \psi _{2}|$ 对偶。
• 给定任何左矢$\langle \phi |$ 及右矢$|\psi \rangle$ ，内积的一个公理性质指出
$\langle \phi |\psi \rangle =\langle \psi |\phi \rangle ^{*)$ • 给定任何算符$X$ 、左矢$\langle \phi |$ 及右矢$|\psi \rangle$ ，它们之间的合法相乘满足乘法结合公理，例如，:16-17
$(|\omega \rangle \langle \phi |)\ |\psi \rangle =|\omega \rangle \ (\langle \phi |\psi \rangle )$ $\langle \phi |\ (X|\psi \rangle )=(\langle \phi |X)\ |\psi \rangle$ ## 参考文献

1. ^ PAM Dirac. A new notation for quantum mechanics 35 (3). 1939: 416–418 [2014-01-31]. doi:10.1017/S0305004100021162. （原始内容存档于2013-12-03）. |journal=被忽略 (帮助)
2. ^ Sakukrai, J. J.; Napolitano, Jim, Modern Quantum Mechanics 2nd, Addison-Wesley, 2010, ISBN 978-0805382914

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.

Back to homepage

Please click Allow in the top-left corner,
then click Install Now in the dialog
then click Install
then click Install

#### Install Wikiwand

Install on Chrome Install on Firefox

#### Enjoying Wikiwand?

Share on Gmail Share on Facebook Share on Twitter Share on Buffer