For faster navigation, this Iframe is preloading the Wikiwand page for 电阻.

电阻

维基百科,自由的百科全书

电磁学里,电阻是一个物体对于电流通过的阻碍能力,以方程定义为

其中,为电阻,为物体两端的电压为通过物体的电流

假设这物体具有均匀截面面积,则其电阻与电阻率长度成正比,与截面面积成反比。

采用国际单位制,电阻的单位为欧姆(Ω,Ohm)。电阻的倒数电导,单位为西门子(S)。

假设温度不变,则很多种物质会遵守欧姆定律,即这些物质所组成的物体,其电阻为常数,不跟电流或电压有关。称这些物质为“欧姆物质”;不遵守欧姆定律的物质为“非欧姆物质”。 电路符号常常用R来表示,例: R1、R02、R100等。

导体与电阻器

一个6.5 MΩ的电阻器,其外表色码标识出它的电阻值。电阻表可以用来验证它的电阻值。
一个6.5 MΩ的电阻器,其外表色码标识出它的电阻值。电阻表可以用来验证它的电阻值。

电线一类的物体,具有低电阻,可以很有效率地传输电流,这类物体称为“导体”。通常导体是由像一类具有优等导电性质的金属制造,或者次等导电性质的。电阻器是具有特定电阻的电路元件。制备电阻器所使用的原料有很多种;应该使用哪种原料,要视指定的电阻、能量耗散、准确度和成本等因素而定。

直流电

处于均匀外电场的均匀截面导体(例如,电线)。
处于均匀外电场的均匀截面导体(例如,电线)。

物理学里,对于物质的微观层次电性质研究,会使用到的欧姆定律,以向量方程表达为

其中,电场电阻率电流密度

在导体内任意两点g、h,定义电压为将单位电荷从点g移动到点h,电场力所需做的机械功[1]

其中,是电压,是机械功,是电荷量,是微小线元素。

假设,沿着积分路径,电流密度为均匀电流密度,并且平行于微小线元素:

其中,是积分路径的单位向量。

那么,可以得到电压:

其中,是积分路径的径长。

假设导体具有均匀的电阻率,则通过导体的电流密度也是均匀的:

其中,是导体的截面面积。

电压简写为。电压与电流成正比:

总结,电阻与电阻率的关系为

假设,则;将单位电荷从点g移动到点h,电场力需要作的机械功。所以,点g的电势比点h的电势高,从点g到点h的电势差为。从点g到点h,电压降是;从点h到点g,电压升是

交流电

假设电线传导的电流是高频率交流电,则由于趋肤效应,电线的有效截面面积会减小。假设平行排列几条电线在一起,则由于邻近效应,每一条电线的有效电阻会大于单独电线的电阻。对于普通家用交流电,由于频率很低,这些效应非常微小,可以忽略这些效应。

测量电阻

四端点量测技术可以用来准确地测量点2与点3之间的电阻。
四端点量测技术可以用来准确地测量点2与点3之间的电阻。

电阻计是测量电阻的仪器。由于探针电阻和接触电阻会造成电压降,简单电阻器不能准确地测量低电阻。高准确度测量工作必须使用四端点测量技术four-terminal measurement technology)。

能带理论概述

绝缘体的电子能级。
绝缘体的电子能级。

根据量子力学,束缚于原子内部的电子,其能量不能假定为任意数值,而只能占有某些固定能级,在这些能级之间的数值不可能是电子的能量。这些能级可以分为两组,一组称为导带,另一组称价带。导带的能级通常比较高一些。处于导带的电子可以自由地移动于物体内部。

绝缘体半导体中,原子之间会相互影响,使得导带和价带之间出现禁带,电子无法处于禁带。为了要产生电流,必须给予电子相当大的能量,协助电子从价带,跳过禁带,进入导带。因此,即使对这些物质施加很大的电压,产生的电流仍旧很小。

电阻种类

此章节需要扩充
  • 碳膜电阻
  • 金属氧化膜电阻
  • 精密电阻
  • 绕线电阻
  • 水泥电阻
  • 固定瓷管电阻
  • 低感瓷管电阻
  • 铝壳精密电阻
  • 光敏电阻:收到光线改变就会跟着改变电阻值的电阻
  • 热敏电阻
  • 压敏电阻

各种不同材料的电阻

金属

金属是一群原子晶格结构形成的晶体,每个原子都拥有一层(或多层)由电子组成的外壳。处于外壳的电子能脱离原子核的吸引力而到处流动,形成一片电子海,使得金属能够导电。当施加电势差(即电压)于金属两端时,因为感受到电场的影响,这些自由电子会呈加速运动。但是每当自由电子与晶格发生碰撞,其动能会遭受损失,以热能的形式将能量释放,所以,电子的平均移动速度是漂移速度,其方向与电场方向相反。由于漂移运动,会产生电流。在现实中,物质的原子排列不可能为完全规则,因此电子在流动途中会被不按规则排列的原子散射,这是电阻的来源。

给予一个具有完美晶格的金属晶体,移动于这晶体的电子,其运动等价于移动于自由空间、具有有效质量的电子的运动。所以,假设热运动足够微小,周期性结构没有偏差,则这晶体的电阻等于零。但是,真实晶体并不完美,时常会出现晶体缺陷,有些晶格点的原子可能不存在,可能会被杂质侵占。这样,晶格的周期性会被扰动,因而电子会被散射。另外,假设温度大于绝对零度,则处于晶格点的原子会发生热震动,因而出现热震动的粒子——声子——移动于晶体。温度越高,声子越多。声子会与电子发生碰撞,这过程称为晶格散射(lattice scattering)。主要由于上述两种散射,自由电子的流动会被阻碍,晶体因此具有有限电阻[2]

半导体和绝缘体

对于金属,费米能级的位置在导带区域内,因此金属内部会出现自由的传导电子。可是,对于半导体,费米能级的位置在能隙区域内。

本征半导体是未被掺杂的半导体,其费米能级大约为导带最低值与价带最高值的平均值。当温度为绝对零度时,本征半导体内部没有自由的传导电子,电阻为无穷大。当温度开始上升,高于绝对零度时,有些电子可能会获得能量而进入传导带中;假设施加外电场,则这些电子在获得外电场的能量后,会移动于金属内部,因而形成电流。

杂质半导体是经过掺杂的半导体。靠着捐赠电子给导带,或价带接受空穴,杂半导体内部的杂质原子能够增加电荷载子的密度,从而减低电阻。高度渗杂的半导体的导电性质类似金属。在非常高温度状况,热生成电荷载子的贡献会超过杂质原子的贡献;随着温度的增加,电阻会呈指数递减。

离子液体/电解质

电解质中,电流是由带电的离子的流动产生,因此液体的电阻很受浓度所影响。譬如蒸馏水是绝缘体,但盐水就是很好的导电体。

生物体内的细胞膜,离子盐负责电流的传送。细胞膜中的小孔道,称为离子通道,会选择什么离子可以通过。这直接决定了细胞膜的电阻。

非欧姆元件

电流对电压线图。理想电阻器和PN接面二极管的I-V线分别以红色和黑色显示。
电流对电压线图。理想电阻器和PN接面二极管的I-V线分别以红色和黑色显示。

有些电路元件不遵守欧姆定律,它们的电压与电流之间的关系(I-V线)乃非线性关系。PN接面二极管是一个显明范例。如右图所示,随着二极管两端电压的递增,电流并没有线性递增。给定外电压,可以用I-V线来估计电流,而不能用欧姆定律来计算电流,因为电阻会因为电压的不同而改变。具有这种特性的电阻或元件称为“非线性电阻”或“非欧姆元件”。

非欧姆元件的常见实例包括二极管气体放电灯萤光灯)、压敏电阻等。

对于这类元件在特定电压电流下的电阻量,使用V-I线的斜率(或是I-V曲线斜率的倒数),称为小信号电阻(small-signal resistance)、增量电阻(incremental resistance)或动态电阻(dynamic resistance),定义为

此动态的电阻量适用于计算非欧姆元件,动态电阻的单位一样也是欧姆[3]

温度对电阻的影响

温度对不同物质的电阻会有不同的影响。

导电体

铜金属在不同温度状况的电阻温度系数[4]。
金属在不同温度状况的电阻温度系数[4]

假设温度接近室温,则典型金属的电阻通常与温度正比[5]

其中,是典型金属在参考温度为时的参考电阻,电阻温度系数

是电阻变化百分比每单位温度。每一种物质都有其特定的。实际而言,上述关系式只是近似,真实的物理是非线性的;换句话说,本身会随着温度的改变而变化。因此,通常会在字尾添加测量时的温度。例如,是在温度为15 °C时测量的电阻温度系数;使用为电阻温度系数,则参考温度为15 °C,参考电阻为金属在参考温度为15 °C时的参考电阻,而且上述关系式只适用于计算温度在15 °C附近的电阻 [6]

稍加排列,这方程又可表示为

的极限,则可得到微分方程[4]

所以,在温度为时,物质的电阻温度系数是,其电阻对温度的曲线在温度为时的斜率,除以温度为时的电阻。

于1860年代,奥古斯土·马西森想出马西森定则(Matthiessen's rule)。这定则表明,总电阻率可以分为两个项目[7]

其中,是由于晶体缺陷而产生的电阻率,是由于声子而产生的电阻率。

与金属内部的缺陷密度有关,是电阻率对温度的曲线外推至0K时的电阻率。因此,与温度无关。等于。假若缺陷密度不高,则通常与缺陷密度无关。与电子跟声子的碰撞率有关,而碰撞率与声子密度成正比。假设温度高于德拜温度,则声子密度与温度成正比,所以,与温度成正比:

其中,是比例常数。

这方程等价于前面电阻与温度的关系方程。

假设温度低于德拜温度,则电阻与温度的5次方成正比[8][9][10]

其中,是比例常数。

水银、白金、黄金在不同温度状况的电阻[11]。
水银白金黄金在不同温度状况的电阻[11]

如右图所示,当温度接近绝对温度时,黄金白金的电阻趋向于常数;而当温度小于4.2K时,水银的电阻突然从0.002欧姆陡降为10-6欧姆,成为超导体

半导体

温度越高,本征半导体的导电性质越优良,电子会被热能撞跳至导带,从而可以自由的移动,也因而留下空穴于价带,也可以自由的移动于价带。这电阻行为以方程表达为

其中,是常数。

杂半导体的电阻对于温度的反应比较复杂。从绝对零度开始,随着温度增加,由于载子迅速地离开施主或受主,电阻会急剧降低。当大多数的施主或受主都失去了载子之后,电阻会因载子的迁移率(mobility)下降而随温度稍为上升。当温度升得更高,杂半导体的电阻行为类似本征半导体;施主或受主的载子数量超小于因热能而产生的载子的数量,于是电阻会再度下降[12]

绝缘体和电解质

绝缘体和电解质的电阻与温度一般成非线性关系,而且不同物质有不同的变化,故不在此列出概括性的算式。

超导体

某些材料在温度接近绝对零度(-273.15°C)或极低的温度时会出现超导现象,目前发现的超导体的最高温度约是203开尔文(-70°C)。

应变对电阻的影响

导体的电阻受应变影响而改变。假设施加张力(一种应力的形式,会引起应变,即导体伸长)于导体,则导体沿张力的方向,其长度会增加,相对而言,导体于垂直张力方向的截面面积会减少。这两种效应共同贡献,使得受到张力的导体,其电阻会随之增加。假设施加压力,则由于压缩(方向相反的应变:导体缩短,截面面积增加),导体应变部分的电阻会减少。应用这效应,应变计(strain gauge)可以测量物体的应变与所受张力。

参看

导抗
实数 虚数 复数 单位
导性 电导(G) 电纳(B) 导纳(Y) 西门子(S)
抗性 电阻(R) 电抗(X) 阻抗(Z) 欧姆(Ω)

参考文献

  1. ^ Alexander, Charles; Sadiku, Matthew, fundamentals of Electric Circuits 3, revised, McGraw-Hill: pp. 9–10, 2006, ISBN 9780073301150 
  2. ^ Seymour J, Physical Electronics, pp 48–49, Pitman, 1972
  3. ^ Horowitz, Paul; Winfield Hill. The Art of Electronics 2nd. Cambridge University Press. 1989: 13. ISBN 0-521-37095-7. 
  4. ^ 4.0 4.1 Pender, Harold & Del Mar, William (编), Handbook for Electrical Engineers:a reference book for practicing engineers and students 2nd, New York: John Wiley & Sons, Inc.: pp. 1350, 2094, 1922 
  5. ^ Bird, John, Electrical and electronic principles and technology, Newnes: pp. 22–24, 2006, ISBN 9780750685566 
  6. ^ Ward, MR, Electrical Engineering Science, pp36–40, McGraw-Hill, 1971.
  7. ^ Kittel, Charles, Introduction to Solid State Physics 8th, John Wiley & Sons, Inc.: 148–152, 2005, ISBN 9780471415268 
  8. ^ A. Matthiessen, Rep. Brit. Ass. 32, 144 (1862)
  9. ^ A. Matthiessen, Progg. Anallen, 122, 47 (1864)
  10. ^ Enss, Christian; Hunklinger, Siegfried, Low-temperature physics illustrated, Springer: pp. 216–218, 2005, ISBN 9783540231646 
  11. ^ 昂内斯, 海克, Investigations into the properties of substances at low temperatures, which have led, amongst other things, to the preparation of liquid helium. (PDF), Nobel Lecture, 1913年12月 [2010-12-23], (原始内容存档 (PDF)于2006-04-25) 
  12. ^ Seymour J, Physical Electronics, chapter 2, Pitman, 1972

外部链接

  • 克莱门森大学车辆电子实验室网页:电阻计算机(英文)
{{bottomLinkPreText}} {{bottomLinkText}}
电阻
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.