磁矩 - Wikiwand
For faster navigation, this Iframe is preloading the Wikiwand page for 磁矩.

磁矩

维基百科,自由的百科全书

磁矩是磁铁的一种物理性质。处于外磁场磁铁,会感受到力矩,促使其磁矩沿外磁场的磁场线方向排列。磁矩可以用矢量表示。磁铁的磁矩方向是从磁铁的指南极指向指北极,磁矩的大小取决于磁铁的磁性与量值。不只是磁铁具有磁矩,载流回路电子分子行星等等,都具有磁矩。

科学家至今尚未发现宇宙中存在有磁单极子。一般磁性物质的磁场,其泰勒展开多极展开式,由于磁单极子项目恒等于零,第一个项目是磁偶极子项、第二个项目是磁四极子quadrupole)项,以此类推。磁矩也分为磁偶极矩、磁四极矩等等部分。从磁矩的磁偶极矩、磁四极矩等等,可以分别计算出磁场的磁偶极子项目、磁四极子项目等等。随着距离的增远,磁偶极矩部分会变得越加重要,成为主要项目,因此,磁矩这术语时常用来指称磁偶极矩。有些教科书内,磁矩的定义与磁偶极矩的定义相同[1]

概述

一个载流循环的磁偶极矩是其所载电流乘以回路面积:

其中,为磁偶极矩,为电流,为面积矢量。磁偶极矩、面积矢量的方向是由右手定则决定。

处于外磁场的载流循环,其感受到的力矩和其势能与磁偶极矩的关系为:

其中,为力矩,为磁场,为势能。

许多基本粒子,例如电子,都具有内禀磁矩。这种内禀磁矩是许多巨观磁场力的来源,许多物理现象也和此有关。这种磁矩和经典物理的磁矩不同,而是和粒子的自旋有关,必须用量子力学来解释。这些内禀磁矩是量子化的,最小的基本单位,常常称为“磁子”(magneton)。例如,电子自旋的磁矩与玻尔磁子的关系式为:

其中,为电子自旋的磁矩,电子自旋g因子是一项比例常数,玻尔磁子为电子的自旋约化普朗克常数

单位

采用国际单位制,磁偶极矩的量纲面积×电流。磁偶极矩的单位有两种等价的表示法:

1 安培·米2 = 1 焦耳特斯拉

CGS单位制又可细分为几种亚单位制:静电单位制electrostatic units),电磁单位制electromagnetic units)、高斯单位制

磁偶极矩单位转换表[2]
光速 c = 29,979,245,800 ≈ 3·1010
语言 国际单位制 静电单位制 电磁单位制 高斯单位制
中文 1 安培·米2 = 1 焦耳特斯拉 = (103 c) 静安培·公分2 = (103) 绝对安培·公分2 = (103) 尔格高斯
英文 1 A·m2 =1 J/T = (103 c) statA·cm2 = (103) abA·cm2 = (103) ergGauss

磁偶极矩在电磁单位制与在静电单位制的比例正好等于单位为公分/秒的光速

在这篇文章内,所有的方程都采用国际单位制。

两种磁源

在任何物理系统里,磁矩最基本的源头有两种:

  • 电荷的运动,像电流,会产生磁矩。只要知道物理系统内全部的电流密度分布(或者所有的电荷的位置和速度),理论上就可以计算出磁矩。
  • 像电子、质子一类的基本粒子会因自旋而产生磁矩。每一种基本粒子的内禀磁矩的大小都是常数,可以用理论推导出来,得到的结果也已经通过做实验核对至高准确度。例如,电子磁矩的测量值是−9.284764×10−24焦耳/特斯拉[3]。磁矩的方向完全决定于粒子的自旋方向(电子磁矩的测量值是负值,这意味着电子的磁矩与自旋呈相反方向)。

整个物理系统的净磁矩是所有磁矩的矢量和。例如,氢原子的磁场是以下几种磁矩的矢量和:

  • 电子的自旋。
  • 电子环绕着质子的轨域运动。
  • 质子的自旋。

再举个例子,构成条形磁铁的物质,其未配对电子的内禀磁矩和轨域磁矩的矢量和,是条形磁铁的磁矩。

计算磁矩的方程

平面循环

假设一个平面载流循环的面积矢量为
  
    
      
        
          a
        
        
        
      
    
    {\displaystyle \mathbf {a} \,\!}
  
、所载电流为
  
    
      
        I
        
        
      
    
    {\displaystyle I\,\!}
  
,则其磁偶极矩为
  
    
      
        
          μ
        
        =
        I
        
          a
        
        
        
      
    
    {\displaystyle {\boldsymbol {\mu ))=I\mathbf {a} \,\!}
  
。
假设一个平面载流循环的面积矢量为、所载电流为,则其磁偶极矩为

对于最简单的案例,平面载流循环的磁偶极矩

其中,是循环所载有的恒定电流,是平面循环的面积矢量。

面积矢量和磁偶极矩的方向是由右手定则给出:令四只手指朝着电流方向弯曲,伸直大拇指,则大拇指所指的方向即是面积矢量的方向,也是磁偶极矩的方向。

这有限面积的载流循环还有更高阶的磁矩,像磁四极矩,磁八极矩等等。假设载流循环的面积趋向于零、电流趋向于无穷大,同时保持不变,则所有更高阶的磁矩会趋向于零,这真实的载流循环趋向于理想磁偶极子,或纯磁偶极子。

任意回路

对于任意回路案例,假设回路载有恒定电流,则其磁偶极矩为

其中,是积分曲面,边缘的闭合回路,是微小面积元素,是微小线元素,的位置。

引用矢量恒等式

即可得到磁偶极矩的路径积分方程

任意电流分布

对于最广义的任意电流分布案例,磁偶极矩为

其中,是积分体积,是源电流位置,电流密度是微小体积元素。

任意一群移动电荷,像旋转的带电固体,都可以用这方程计算出其磁偶极矩。

基本粒子

原子物理学核子物理学里,磁矩的大小标记为,通常测量单位为玻尔磁子核磁子nuclear magneton)。磁矩关系到粒子的自旋,和/或粒子在系统内的轨域运动。以下列表展示出一些粒子的内禀磁矩:

一些基本粒子的内禀磁矩和自旋[4]
粒子 内禀磁矩(10−27 焦耳特斯拉 自旋量子数
电子 -9284.764 1/2
质子 +14.106067 1/2
中子 -9.66236 1/2
μ子 -44.904478 1/2
重氢 +4.3307346 1
氢-3 +15.046094 1/2

欲知道更多有关于磁矩与磁化强度之间的物理关系,请参阅条目磁化强度

载流回路产生的磁场

磁偶极子的磁场线。从侧面望去,磁偶极子竖立于绘图的中央。
磁偶极子的磁场线。从侧面望去,磁偶极子竖立于绘图的中央。

载流回路会在周围产生磁场。这磁场包括偶极磁场与更高次的多极项目。但是,随着距离的增远,这些多极项目会更快速地减小,因此,在远距离位置,只有偶极项目是磁场的显要项目。

思考一个载有恒定电流的任意局域回路,其磁矢势

其中,是检验位置,是源头位置,是微小线元素的位置,磁常数

假设检验位置足够远,,则表达式可以泰勒展开

其中,勒让德多项式之间的夹角

所以,磁矢势展开为

思考项目,也就是磁单极子项目:

由于闭合回路的矢量线积分等于零,磁单极子项目恒等于零。

再思考项目,也就是磁偶极子项目:

注意到磁偶极矩为,偶极磁矢势可以写为

偶极磁场

由于磁偶极子的矢势有一个奇点在它所处的位置(原点),必须特别小心地计算,才能得到正确答案。更仔细地推导,可以得到磁场为

其中,狄拉克δ函数

偶极磁场的狄拉克δ函数项目造成了原子能级分裂,因而形成了超精细结构hyperfine structure[5]。在天文学里,氢原子的超精细结构给出了21公分谱线,在电磁辐射无线电波范围,是除了3K背景辐射以外,宇宙弥漫最广阔的电磁辐射。从复合纪元(recombination)至再电离纪元(reionization)之间的天文学研究,只能依靠观测21公分谱线无线电波。

给予几个磁偶极矩,则按照叠加原理,其总磁场是每一个磁偶极矩的磁场的总矢量和。

处于外磁场的磁偶极子

磁偶极子感受到的磁力矩

处于均匀磁场的一个方形载流循环。
处于均匀磁场的一个方形载流循环。

如图右,假设载有电流的一个方形循环处于外磁场。方形循环四个边的边长为,其中两个与平行的边垂直于外磁场,另外两个边与磁场之间的夹角角弧为

垂直于外磁场的两个边所感受的磁力矩为

另外两个边所感受的磁力矩互相抵消。注意到这循环的磁偶极矩为 。所以,这循环感受到的磁力矩为

令载流循环的面积趋向于零、电流趋向于无穷大,同时保持不变,则这载流循环趋向于理想磁偶极子。所以,处于外磁场的磁偶极子所感受到的磁力矩也可以用上述方程表示。

当磁偶极矩垂直于磁场时,磁力矩的大小是最大值;当磁偶极矩与磁场平行时,磁力矩等于零。

磁偶极子的势能

将载流循环从角弧扭转到角弧,磁场所做的机械功

注意到磁力矩的扭转方向是反时针方向,而是朝着顺时针方向递增,所以必须添加一个负号。设定,则

对抗这磁场的磁力矩,将载流循环从角弧扭转到角弧,所做的机械功

定义载流循环的势能等于这机械功,以方程表示为

与前段所述同理,磁偶极子的势能也可以用这方程表示。当磁偶极矩垂直于磁场时,势能等于零;当磁偶极矩与磁场呈相同方向时,势能是最小值;当磁偶极矩与磁场呈相反方向时,势能是最大值

非均匀磁场

假设外磁场为均匀磁场,则作用于载流回路的磁场力等于零:

假设外磁场为非均匀的,则会有一股磁场力,作用于磁偶极子。依照磁矩模型的不同,求得的磁场力也会不同[6]。采用常见的“电流模型”,则一个磁偶极子所感受到的磁场力为

另外一种采用“磁荷模型”。这类似电偶极矩的模型,计算出的磁场力为

两者之间的差别为

假设,电流等于零,电场不含时间,则根据麦克斯韦-安培方程

两种模型计算出来的磁场力相等。可是,假设电流不等于零,或电场为含时电场,则两种模型计算出来的磁场力不相等。1951年,两个不同的实验,研究中子散射铁磁性物质,分别得到的结果与电流模型预估的结果相符合[6]

范例

圆形载流循环的磁偶极矩

一个载流循环的磁偶极矩与其面积和所载电流有关。例如,载有1安培电流,半径为0.05米的单匝圆形载流循环,其磁偶极矩为:

磁偶极矩垂直于载流循环的平面。载流循环的磁矩,可以用来建立以下几点论据:

  • 假设场位置的距离超远于循环半径,则磁场会呈反立方减弱:
沿着循环的中心轴,磁矩与场位置平行:
在包含循环的平面的任意位置,磁矩垂直于场位置:
负号表示平面任意位置案例与中心轴案例,这两个案例的磁场呈相反方向。
  • 假设在地球的某地方,地磁场的数值大约为0.5 高斯(5×10−5 特斯拉),而且循环磁矩垂直于地磁场,则此循环所感受到的力矩为
  • 应用力矩的观念,可以制造出罗盘。假设这罗盘的磁针,由于力矩的作用,从磁针的磁矩垂直于地磁场,旋转至磁针的磁矩与地磁场呈相同方向,则这罗盘-地球系统释放出的能量
由于罗盘悬浮系统的摩擦机制,这能量是以热量的形式耗散净尽。

螺线管的磁矩

螺线管三维电脑绘图。
螺线管三维电脑绘图。

一个多匝线圈(或螺线管)的磁矩是其每个单匝线圈的磁矩的矢量和。对于全同匝(单层卷绕),只需将单匝线圈的磁矩乘以匝数,就可得到总磁矩。然后,这总磁矩可以用来计算磁场,力矩,和储存能量,方法与使用单匝线圈计算的方法相同。

假设螺线管的匝数为,每一匝线圈面积为,通过电流为,则其磁矩为

载电粒子圆周运动的磁矩

假设,一个点电荷以等速绕着z-轴,移动于半径为的平面圆形路径,则其电流为[7]

其磁矩为

其角动量

其中,是载电粒子的质量。

所以,磁矩与角动量的经典关系为

对于电子,这经典关系为

其中,是电子的质量,是电子的绝对电量。

假设,这点电荷是个束缚于氢原子内部的电子。由于离心力等于库仑吸引力

其中,电常数

现在施加外磁场于此氢原子,则会有额外的洛伦兹力作用于电子。假设轨道半径不变(这只是一个粗略计算),只有电子的速度改变为,则

所以,

假设,两个速度的差别超小,则

所以,由于施加外磁场,磁矩的变化为

注意到呈相反方向,因而减弱了磁场。这是抗磁性的经典解释。可是,抗磁性是一种量子现像,经典解释并不正确。

为了简略计算,使用半经典方法[8],可以求出磁矩的变化为

其中,是半径平方的期望值

电子的磁矩

电子和许多其它种类的粒子都具有内禀磁矩。这是一种量子属性,涉及到量子力学。详尽细节,请参阅条目电子磁偶极矩electron magnetic dipole moment)。微观的内禀磁矩集聚起来,形成了巨观的磁效应和其它物理现象,例如电子自旋共振

电子的磁矩是

其中,是电子的朗德g因子,玻尔磁子是电子的自旋角动量。

按照前面计算的经典结果,;但是,在狄拉克力学里,;更准确地,由于量子电动力学效应,它的实际値稍微大些,

请注意,由于这方程内的负号,电子磁矩与自旋呈相反方向。对于这物理行为,经典电磁学的解释为:假想自旋角动量是由电子绕着某旋转轴而产生的。因为电子带有负电荷,这旋转所产生的电流的方向是相反的方向,这种载流回路产生的磁矩与自旋呈相反方向。同样的推理,带有正电荷的正子(电子的反粒子),其磁矩与自旋呈相同方向。

原子的磁矩

在原子内部,可能会有很多个电子。多电子原子的总角动量计算,必须先将每一个电子的自旋总和,得到总自旋,再将每一个电子的轨角动量总和,得到总轨角动量,最后用角动量耦合angular momentum coupling)方法将总自旋和总轨角动量总和,即可得到原子的总角动量。原子的磁矩与总角动量的关系为[9]

其中,是原子独特的朗德g因子

磁矩对于磁场方向的分量

其中,是总角动量对于磁场方向的分量,磁量子数,可以取2J+1个整数値,-J、 -J+1、…、J-1、J,之中的任意一个整数值。

因为电子带有负电荷,所以是负值。

处于磁场的磁偶极子的动力学,不同于处于电场电偶极子的动力学。磁场会施加力矩于磁偶极子,迫使它依著磁场线排列。但是,力矩是角动量对于时间的导数。所以,会产生自旋进动,也就是说,自旋方向会改变。这物理行为以方程表达为

其中,是回转磁比率(gyromagnetic ratio) ,是磁场。

注意到这方程的左手边项目是角动量对于时间的导数,而右手边项目是力矩。磁场又可分为两部分:

其中,是有效磁场(外磁场加上任何自身场),阻尼系数。

这样,可以得到兰道-李佛西兹-吉尔伯特方程(Landau–Lifshitz–Gilbert equation[10]

方程右边第一个项目描述磁偶极子绕着有效磁场的进动,第二个项目是阻尼项目,会使得进动渐渐减弱,最后消失。兰道-李佛西兹-吉尔伯特方程是研究磁化动力学最基本的方程之一。

原子核的磁矩

核子系统是一种由核子质子中子)组成的精密物理系统。自旋是核子的量子性质之一。由于原子核的磁矩与其核子成员有关,从核磁矩的测量数据,更明确地,从核磁偶极矩的测量数据,可以研究这些量子性质。

虽然有些同位素原子核的激发态衰变期超长,大多数常见的原子核的自然存在状态是基态。每一个同位素原子核的能态都有一个独特的、明显的核磁偶极矩,其大小是一个常数,通过细心设计的实验,可以测量至非常高的精确度。这数值对于原子核内每一个核子的独自贡献非常敏感。若能够测量或预测出这数值,就可以揭示核子波函数的内涵。现今,有很多理论模型能够预测核磁偶极矩的数值,也有很多种实验技术能够进行原子核测试。

分子的磁矩

任何分子都具有明确的磁矩。这磁矩可能会跟分子的能态有关。通常而言,一个分子的磁矩是下列贡献的总和,按照典型强度从大至小列出:

  • 假若有未配对电子,则是其自旋所产生的磁矩(顺磁性贡献)
  • 电子的轨域运动,处于基态时,所产生常与外磁场成正比的磁矩(抗磁性贡献)
  • 依照核自旋组态,核自旋所产生的总磁矩。

分子磁性范例

  • 分子,O2,由于其最外面的两个未配对电子的自旋,具有强顺磁性。
  • 二氧化碳分子,CO2,由于电子轨域运动而产生的,与外磁场成正比的,很微弱的磁矩。在某些稀有状况下,假若这分子是由具磁性的同位素组成,像13C或17O,则此同位素原子核也会将其核磁性贡献给分子的磁矩。
  • 分子,H2,处于一个弱磁场(或零磁场),会显示出核磁性。氢分子的两种自旋异构体正氢仲氢,都具有这种物理性质。

参阅

参考文献

  1. ^ Jackson, John David, Classical Electrodynamic 3rd., USA: John Wiley & Sons, Inc.: pp. 186, 1999, ISBN 978-0-471-30932-1 
  2. ^ Cardarelli, F., Encyclopaedia of Scientific Units, Weights and Measures: Their SI Equivalences and Origins 2nd, Springer: pp. 20–25, 2004, ISBN 1-8523-3682-X 
  3. ^ 美国国家标准与技术研究院(NIST)的实验値:电子磁矩页面存档备份,存于互联网档案馆
  4. ^ 參閱美國國家標準與技術研究院的Fundamental Physical Constants網頁:. [2010-04-10]. (原始内容存档于2009-08-22). 
  5. ^ Griffiths, David J., Hyperfine splitting in the ground state of hydrogen (PDF), American Journal of Physics, August 1982, 50 (8): pp. 698 [2010-04-11], (原始内容存档 (PDF)于2020-05-12) 
  6. ^ 6.0 6.1 Boyer, Timothy H., The Force on a Magnetic Dipole (PDF), American Journal of Physics, 1988, 56 (8): pp. 688–692, doi:10.1119/1.15501 [永久失效链接]
  7. ^ Griffiths, David J., Introduction to Electrodynamics (3rd ed.), Prentice Hall: pp. 260–262, 1998, ISBN 0-13-805326-X 
  8. ^ O'Dell, S. L.; Zia, R. K. P., Classical and semiclassical diamagnetism: A critique of treatment in elementary texts (PDF), American Journal of Physics, Jan 1986, 54 (1): pp. 32–35 [永久失效链接]
  9. ^ RJD Tilley, Understanding Solids, John Wiley and Sons: pp. 368, 2004, ISBN 0470852755 
  10. ^ Stuart Alan Rice, Advances in chemical physics 128, Wiley: pp. 208 ff, 2004, ISBN 0471445282 


{{bottomLinkPreText}} {{bottomLinkText}}
磁矩
Listen to this article