素数倒数幻方 - Wikiwand
For faster navigation, this Iframe is preloading the Wikiwand page for 素数倒数幻方.

素数倒数幻方

维基百科,自由的百科全书

本条目存在以下问题,请协助改善本条目或在讨论页针对议题发表看法。 此条目已列出参考文献,但因为没有文内引注而使来源仍然不明。 (2018年12月)请通过加入合适的行内引用来改善这篇条目。 此条目需要补充更多来源。 (2018年12月)请协助添加多方面可靠来源以改善这篇条目,无法查证的内容可能会因为异议提出而移除。 没有或很少条目链入本条目。 (2018年12月3日)请根据格式指引,在其他相关条目加入本条目的内部链接,来建构维基百科内部网络。

素数倒数幻方(prime reciprocal magic square)是指用素数倒数及其倍数的循环小数各位数组成的幻方。有些素数的倒数则可以形成对角线和也满足条件的幻方。

考虑在十进制下的1/7,其小数为循环小数1/7 = 0·142857142857142857...,若再考虑其倍数,会看到这六个数字的循环排列英语cyclic permutation

1/7 = 0·1 4 2 8 5 7...
2/7 = 0·2 8 5 7 1 4...
3/7 = 0·4 2 8 5 7 1...
4/7 = 0·5 7 1 4 2 8...
5/7 = 0·7 1 4 2 8 5...
6/7 = 0·8 5 7 1 4 2...

若用上述数字形成方阵,每一列的和是1+4+2+8+5+7,即为27,每一行的和也是27,若不考虑对角线,因此可以形成一个幻方:

1 4 2 8 5 7
2 8 5 7 1 4
4 2 8 5 7 1
5 7 1 4 2 8
7 1 4 2 8 5
8 5 7 1 4 2

不过其对角线不是27。

考虑1/19的倍数,下一行是上一行的二倍,而小数位数似乎右移一位:

01/19 = 0.052631578,947368421
02/19 = 0.1052631578,94736842
04/19 = 0.21052631578,9473684
08/19 = 0.421052631578,947368
16/19 = 0.8421052631578,94736

分子乘以2会让小数的位数右移一位:

在1/19形成的方阵中,其最大周期为18,每一行及每一列的和是81,而且对角线也是81,完全符合幻方的条件:

01/19 = 0·0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1...
02/19 = 0·1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2...
03/19 = 0·1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3...
04/19 = 0·2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4...
05/19 = 0·2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5...
06/19 = 0·3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6...
07/19 = 0·3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7...
08/19 = 0·4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8...
09/19 = 0·4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9...
10/19 = 0·5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0...
11/19 = 0·5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1...
12/19 = 0·6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2...
13/19 = 0·6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3...
14/19 = 0·7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4...
15/19 = 0·7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5...
16/19 = 0·8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6...
17/19 = 0·8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7...
18/19 = 0·9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8...

在各素数在不同进制下,也可能会有相同的现象,以下是列表,列出素数、进制以及幻方和 ((进制-1) 乘 (素数-1) / 2:

素数 进制 幻方和
19 10 81
53 12 286
53 34 858
59 2 29
67 2 33
83 2 41
89 19 792
167 68 5,561
199 41 3,960
199 150 14,751
211 2 105
223 3 222
293 147 21,316
307 5 612
383 10 1,719
389 360 69,646
397 5 792
421 338 70,770
487 6 1,215
503 420 105,169
587 368 107,531
593 3 592
631 87 27,090
677 407 137,228
757 759 286,524
787 13 4,716
811 3 810
977 1,222 595,848
1,033 11 5,160
1,187 135 79,462
1,307 5 2,612
1,499 11 7,490
1,877 19 16,884
1,933 146 140,070
2,011 26 25,125
2,027 2 1,013
2,141 63 66,340
2,539 2 1,269
3,187 97 152,928
3,373 11 16,860
3,659 126 228,625
3,947 35 67,082
4,261 2 2,130
4,813 2 2,406
5,647 75 208,902
6,113 3 6,112
6,277 2 3,138
7,283 2 3,641
8,387 2 4,193

相关条目

参考资料

Rademacher, H. and Toeplitz, O. The Enjoyment of Mathematics: Selections from Mathematics for the Amateur. Princeton, NJ: Princeton University Press, pp. 158–160, 1957.

Weisstein, Eric W. "Midy's Theorem." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/MidysTheorem.html

{{bottomLinkPreText}} {{bottomLinkText}}
素数倒数幻方
Listen to this article