结合律
维基百科,自由的 百科全书
在数学中,结合律(associative property)是二元运算可以有的一个性质,意指在一个包含有二个以上的可结合运算子的表示式,只要运算数的位置没有改变,其运算的顺序就不会对运算出来的值有影响。亦即,重新排列表示式中的括号并不会改变其值。例如:
上式中的括号虽然重新排列了,但表示式的值依然不变。当这在任何实数的加法上都成立时,我们说“实数的加法是一个可结合的运算”。
结合律不应该和交换律相混淆。交换律会改变表示式中运算元的位置,而结合律则不会。例如:
是一个结合律的例子,因为其中的括号改变了(且因此运算子在运算中的顺序也改变了),而运算元、
、
则在原来的位置中。再来,
则不是一个结合律的例子,因为运算元和
的位置互换了。
可结合的运算在数学中是很常见的,且事实上,大多数的代数结构确实会需要它们的二元运算是可结合的。不过,也有许多重要且有趣的运算是不可结合的;其中一个简单的例子为向量积。