解析数论 - Wikiwand
For faster navigation, this Iframe is preloading the Wikiwand page for 解析数论.

解析数论

维基百科,自由的百科全书

本条目存在以下问题,请协助改善本条目或在讨论页针对议题发表看法。 此条目需要补充更多来源。 (2017年1月9日)请协助添加多方面可靠来源以改善这篇条目,无法查证的内容可能会因为异议提出而移除。 此条目需要扩充。 (2017年1月9日)请协助改善这篇条目,更进一步的信息可能会在讨论页或扩充请求中找到。请在扩充条目后将此模板移除。 此条目需要精通或熟悉相关主题的编者参与及协助编辑。 (2017年1月9日)请邀请适合的人士改善本条目。更多的细节与详情请参见讨论页。
复平面上的黎曼ζ函数ζ(s),其颜色表示函数的值,越接近黑色的表示其数值越接近零,而其色相表示函数数值的幅角
复平面上的黎曼ζ函数ζ(s),其颜色表示函数的值,越接近黑色的表示其数值越接近零,而其色相表示函数数值的幅角

解析数论(analytic number theory),为数论中的分支,它使用由数学分析中发展出的方法,作为工具,来解决数论中的问题[1]。它首次出现在数学家狄利克雷在1837年导入狄利克雷L函数,来证明狄利克雷定理[1][2]。解析数论的成果中,较广为人知的是在质数(例如质数定理黎曼ζ函数)及堆叠数论(例如哥德巴赫猜想华林问题)。

解析数论的分支

解析数论主要分为两种,区分方式主要是因为待求解问题种类的不同,而比较不是因为使用技巧上的基本差异。

历史

微积分复变函数论发展以后,产生了解析数论。该学科的第一个主要成就是狄利克雷用解析方法证明了狄利克雷定理。依靠黎曼ζ函数对素数定理的证明是另一个里程碑。 解析数论是解决数论中艰深问题的重要工具,数论中有些问题必须由解析方法才能提出或解决。 中国的华罗庚开启了中国解析数论学派,王元陈景润潘承洞等人在“哥德巴赫猜想”上也有相当进展,陆续证明了“3+4”、“2+3”及“1+2”[3],其中的“1+2”就是陈氏定理[4]

问题及结果

解析数论的定理及成果比较不是有关整数精确结构的的结果,这方面用代数或是几何上的工具比较合适。解析数论的许多定理多半会预估一些数论相关函数的范围及预计。

乘性数论

欧几里得证明了质数有无限多个,可是很难找到可以快速判定一个整数是否是质数的方法(特别是整数很大时)。另外一个也有关系,但比较简单的问题是找到质数的渐近分布,也就是可以大略描述有多少质数小于特定整数。卡尔·高斯在计算大量的质数后提出其猜想,他认为小于或等于一个很大整数N的质数个数,接近以下的定积分

波恩哈德·黎曼在1859年利用复变分析以及一个特殊的亚纯函数(后来称为黎曼ζ函数)来推导小于等于特定实数x之质数个数的解析解。值得一提的是,黎曼公式的主要项就是上述的积分,因此让高斯的猜想更加重要。黎曼找到了解析解中的误差项和黎曼ζ函数的复数零点有密切的关系,因此质数分布的形式也和黎曼ζ函数的复数零点有关。雅克·阿达马查尔斯·让·德·拉谷地普桑英语Charles Jean de la Vallée-Poussin利用黎曼的概念,以及对ζ函数零点的资讯,致力证明高斯的猜想,而且他们证明了若

上述的结果目前称为质数定理,是解析数论的核心结果。简单的说,质数定理提到给定一个大数字N,小于等于N的质数个数大约有N/log(N)个。

堆叠数论

华林问题堆叠数论中最重要的问题之一,问题是针对任意大于等于2的整数k,是否可以将任意正整数表示为有限个整数的k次方的和

针对平方的例子k = 2,已由拉格朗日在1770年由四平方和定理证明。针对任意整数的例子由大卫·希尔伯特在1909年证明,不过运用的是代数的技巧,没有提出数字个数的上界。戈弗雷·哈罗德·哈代约翰·恩瑟·李特尔伍德应用解析数论的工具处理此一问题,带来突破性的进展,他们用的工具称为圆法(circle method),可以针对函数G(k)(整数用k次方和表示时,需要的最小整数)提出具体的上界,例如维诺格拉多夫上界为

丢番图方程

丢番图方程和多项式方程的整解有关。有些研究可能是探讨解的分析情形,也就是依照某种“高度函数”来计算这些解。

高斯圆问题英语Gauss circle problem是丢番图方程中的一个重要例子,要求满足下式的整数点(x y)

用几何的方式来说,给定在平面上,以原点为圆心,半径是 的圆,此问题要问的是在此圆内和圆上有多少个格子点。其解为,其中时。不过最难(也是解析数论取得大幅进展)的部分是在确认此误差项 的上界。高斯证明了误差项的渐近行为,O(r)为大O符号,表示误差项不会超过 的线性项。而后来瓦茨瓦夫·谢尔宾斯基在1906年证明了。哈代和爱德蒙·兰道都证明了不成立( 数量级超过 开根号)。因此以后目标是证明针对每一个,都存在实数 使得

2000年马丁·赫胥黎英语Martin Huxley证明了[5],是目前最好的结果。

相关条目

参考资料

  1. ^ 1.0 1.1 Apostol 1976, p. 7.
  2. ^ Davenport 2000, p. 1.
  3. ^ 哥德巴赫猜想中的“x+y”表示是“所有充分大的偶数都能表示成两个数之和,并且两个数的质因数个数分别都不超过x个及y个”
  4. ^ 陈景润. 大偶数表为一个素数及一个不超过二个素数的乘积之和. 中国科学A辑. 1973, (2): 111–128. 
  5. ^ M.N. Huxley, Integer points, exponential sums and the Riemann zeta function, Number theory for the millennium, II (Urbana, IL, 2000) pp.275–290, A K Peters, Natick, MA, 2002, MR1956254.

参考书目

延伸阅读

  • Ayoub, Introduction to the Analytic Theory of Numbers
  • H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory I : Classical Theory
  • H. Iwaniec and E. Kowalski, Analytic Number Theory.
  • D. J. Newman, Analytic number theory, Springer, 1998

On specialized aspects the following books have become especially well-known:

  • Titchmarsh, Edward Charles, The Theory of the Riemann Zeta Function 2nd, Oxford University Press, 1986 
  • H. Halberstam and H. E. Richert, Sieve Methods
  • R. C. Vaughan, The Hardy–Littlewood method, 2nd. edn.

Certain topics have not yet reached book form in any depth. Some examples are (i) Montgomery's pair correlation conjecture and the work that initiated from it, (ii) the new results of Goldston, Pintz and Yilidrim on small gaps between primes, and (iii) the Green–Tao theorem showing that arbitrarily long arithmetic progressions of primes exist.

{{bottomLinkPreText}} {{bottomLinkText}}
解析数论
Listen to this article