超实数 (非标准分析) - Wikiwand
For faster navigation, this Iframe is preloading the Wikiwand page for 超实数 (非标准分析).

超实数 (非标准分析)

维基百科,自由的百科全书

此条目需要扩充。 (2013年2月14日)请协助改善这篇条目,更进一步的信息可能会在讨论页或扩充请求中找到。请在扩充条目后将此模板移除。
超实数轴上的无穷小(ε)和无穷大(ω)(1/ε=ω/1)
超实数轴上的无穷小(ε)和无穷大(ω)(1/ε=ω/1)
各种各样的
基本

正数
自然数
正整数
小数
有限小数
无限小数
循环小数
有理数
代数数
实数
复数
高斯整数

负数
整数
负整数
分数
单位分数
二进分数
规矩数
无理数
超越数
虚数
二次无理数
艾森斯坦整数

延伸

二元数
四元数
八元数
十六元数
超实数
大实数
上超实数

双曲复数
双复数
复四元数
共四元数英语Dual quaternion
超复数
超数
超现实数

其他

质数
可计算数
基数
阿列夫数
同余
整数数列
公称值

规矩数
可定义数
序数
超限数
p进数
数学常数

圆周率
自然对数的底
虚数单位
无穷大

超实数系统是为了严格处理无穷量(无穷大量无穷小量)而提出的。自从微积分的发明以来,数学家、科学家和工程师等(包括牛顿莱布尼兹在内)就一直广泛地用无穷小量等概念。超实数集,或称为非标准实数集,记为,是实数集  的一个扩张;其中含有一种数,它们大于所有如下形式的数:

有限个)

这可以解释为无穷大;而它们的倒数就作为无穷小量 满足如下性质:任何关于  的一阶命题如果成立,则对  也成立。这种性质称为传达原理英语Transfer principle。举例来说,实数集的加法交换律

是关于  的一阶命题。因此以下命题同样成立:

也就是说超实数集同样满足加法交换律。

无穷小量的概念是否严格呢?此问题可以追溯到古希腊数学:数学家们如欧几里得阿基米德等,为了在一些证明里绕开无穷小量的争议以保证严格性,而采用了穷竭法等其它说明方式[1]。而亚伯拉罕·鲁滨逊在1960年代证明了,

超实数系统是相容的,当且仅当实数系统是相容的

换句话说,如果对实数的使用没有怀疑,那也可以放心使用超实数。在处理数学分析的问题时对超实数、尤其是传达原理的使用,通称为非标准分析

参考资料

  1. ^ Ball, p. 31
  • Ball, W.W. Rouse. A Short Account of the History of Mathematics 4th ed. [Reprint. Original publication: London: Macmillan & Co., 1908]. New York: Dover Publications. 1960: 50–62. ISBN 0-486-20630-0. 
{{bottomLinkPreText}} {{bottomLinkText}}
超实数 (非标准分析)
Listen to this article