转置矩阵 - Wikiwand
For faster navigation, this Iframe is preloading the Wikiwand page for 转置矩阵.

转置矩阵

维基百科,自由的百科全书

此条目没有列出任何参考或来源。 (2019年12月15日)维基百科所有的内容都应该可供查证。请协助添加来自可靠来源的引用以改善这篇条目。无法查证的内容可能被提出异议而移除。
线性代数 A = [ 1 2 3 4 ] {\displaystyle \mathbf {A} ={\begin{bmatrix}1&2\\3&4\end{bmatrix))} 向量 · 向量空间  · 行列式  · 矩阵 向量 标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积 矩阵与行列式 矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 · 线性空间与线性变换 线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 · 查论编
矩阵A的转置AT的取得方法。重复以上动作会得出原本的矩阵大家都是猫猫哦。
矩阵A的转置AT的取得方法。重复以上动作会得出原本的矩阵大家都是猫猫哦。

线性代数中,矩阵A转置(英语:transpose)是另一个矩阵AT(也写做Atr, tAA′)由下列等价动作建立:

  • A的横行写为AT的纵列
  • A的纵列写为AT的横行

形式上说,m × n矩阵A的转置是n × m矩阵

for

注意:(转置矩阵)与逆矩阵)不同。

例子

性质

对于矩阵A, B和标量c转置有下列性质:

  • 转置是自身逆运算
  • 转置是从m × n矩阵的向量空间到所有n × m矩阵的向量空间的线性映射
  • 注意因子反转的次序。以此可推出方块矩阵A可逆矩阵,当且仅当AT是可逆矩阵,在这种情况下有 (A−1)T = (AT)−1。相对容易的把这个结果扩展到矩阵相乘的一般情况,可得出 (ABC...XYZ)T = ZTYTXT...CTBTAT
  • 标量的转置是同样的标量。
  • 矩阵的转置矩阵的行列式等于这个矩阵的行列式。
  • 两个纵列向量ab点积可计算为
  • 如果A只有实数元素,则ATA正半定矩阵
  • 如果A是在某个上,则A 相似AT

特殊转置矩阵

其转置等于自身的方块矩阵叫做对称矩阵;就是说A是对称的,如果

其转置也是它的逆矩阵的方块矩阵叫做正交矩阵;就是说G是正交的,如果

I单位矩阵

其转置等于它的负矩阵的方块矩阵叫做斜对称矩阵;就是A是斜对称的,如果

复数矩阵A共轭转置,写为AH,是A的转置后再取每个元素的共轭复数:

线性映射的转置

如果f: VW是在向量空间V和W之间非退化双线性形式线性映射,我们定义f的转置为线性映射tf : WV,确定自

这里的,BVBW分别是在VW上的双线性形式。一个映射的转置的矩阵是转置矩阵,只要是关于它们的双线性形式是正交的。

在复向量空间上,经常用到半双线性形式来替代双线性形式。在这种空间之间的映射的转置可类似的定义,转置映射的矩阵由共轭转置矩阵给出,如果基是正交的。在这种情况下,转置也叫做埃尔米特伴随

如果VW没有双线性形式,则线性映射f: VW的转置只能定义为在对偶空间WV之间的线性映射 tf : W*V*

参考资料

外部链接

{{bottomLinkPreText}} {{bottomLinkText}}
转置矩阵
Listen to this article