# 电磁应力-能量张量

## 维基百科，自由的百科全书

${\displaystyle T^{\alpha \beta }={\frac {1}{\mu _{o))}[-F^{\alpha \gamma }F_{\gamma }{}^{\beta }-{\frac {1}{4))g^{\alpha \beta }F_{\gamma \delta }F^{\gamma \delta }]}$.

${\displaystyle T^{\alpha \beta }={\begin{bmatrix}{\frac {1}{2))(\epsilon _{o}E^{2}+{\frac {1}{\mu _{0))}B^{2})&S_{x}&S_{y}&S_{z}\\S_{x}&-\sigma _{xx}&-\sigma _{xy}&-\sigma _{xz}\\S_{y}&-\sigma _{yx}&-\sigma _{yy}&-\sigma _{yz}\\S_{z}&-\sigma _{zx}&-\sigma _{zy}&-\sigma _{zz}\end{bmatrix))}$,

${\displaystyle T^{\alpha \beta }={\frac {1}{4\pi ))[-F^{\alpha \gamma }F_{\gamma }{}^{\beta }-{\frac {1}{4))g^{\alpha \beta }F_{\gamma \delta }F^{\gamma \delta }]}$.

${\displaystyle T^{\alpha \beta }={\begin{bmatrix}{\frac {1}{8\pi ))(E^{2}+B^{2})&S_{x}/c&S_{y}/c&S_{z}/c\\S_{x}/c&-\sigma _{xx}&-\sigma _{xy}&-\sigma _{xz}\\S_{y}/c&-\sigma _{yx}&-\sigma _{yy}&-\sigma _{yz}\\S_{z}/c&-\sigma _{zx}&-\sigma _{zy}&-\sigma _{zz}\end{bmatrix))}$

${\displaystyle {\vec {S))={\frac {c}{4\pi )){\vec {E))\times {\vec {H))}$.