黄金比例 - Wikiwand
For faster navigation, this Iframe is preloading the Wikiwand page for 黄金比例.

黄金比例

维基百科,自由的百科全书

无理数
√2 - φ - √3 - √5 - δS - e - π


二进制 1.1001111000110111011...
十进制 1.6180339887498948482...
十六进制 1.9E3779B97F4A7C15F39...
连续分数
代数形式
无限级数
黄金比例的线段
黄金比例的线段

黄金比例,又称黄金分割[1],是一个数学常数,一般以希腊字母表示[2][3][4]。可以透过以下代数式定义:

这也是黄金比例一名的由来。
黄金比例的准确值为,所以是无理数,而大约值则为(小数点后20位,OEISA001622):

应用时一般取1.618,就像圆周率在应用时取3.14159一样。

黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,而且呈现于不少动物植物的外观。现今很多工业产品、电子产品、建筑物或艺术品均普遍应用黄金分割,展现其实用性与美观性。

历史

黄金比例是属于数学领域的一个专有名词,但是它最后涵盖的内容不只是有关数学领域的研究,根据目前的文献探讨,我们可以说,黄金比例的发现和如何演进至今仍然是一个谜。但有研究指出公元前6世纪古希腊的毕达哥拉斯学派研究过正5边形和正10边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割的一些规则,也发现无理数。他侧重于从数学关系去探讨美的规律,并认为美就是和谐与比例,按照这种比例关系就可以组成美的图案,这其实是一个数字的比例关系,即将一条线分成两部分,较长的一段与较短的一段之比等于全长与较长的一段之比,它们的比例大约是1.618:1,知名的费氏数列也体现了这个数学原则,按此种比例关系组成的任何事物都表现出其内部关系的和谐与均衡。

公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著(即中末比)[5]

中世纪后,黄金分割被披上神秘的外衣,意大利数学家卢卡·帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家约翰内斯·开普勒称神圣比例为黄金分割。到19世纪黄金分割这一名称才逐渐通行,而证据在于德国数学家马丁·欧姆英语Martin Ohm所写的《基本纯数学》第2版注释中写到有关黄金比例的解释:“人们习惯把按此方式将任一直线分割成两部分的方法,称为黄金分割”。而在1875年出版的《大英百科全书》的第9版中,苏利有提到:“由费区那……提出的有趣、实验性浓厚的想法宣称,‘黄金分割’在视觉比例上具有所谓的优越性。”可见黄金分割在当时已经流行了。20世纪时美国数学家马克·巴尔英语Mark Barr给它个名字叫phi。黄金分割有许多有趣的性质,人类对它的实际应用也很广泛,造就了它今天的名气。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家杰克·基弗英语Jack Kiefer (statistician)于1953年首先提出的,70年代在中国推广。

基本计算

黄金分割是根据黄金比例,将一条线分割成两段。总长度a+b与长度较长的a之比等于a与长度较短的b之比。
黄金分割是根据黄金比例,将一条线分割成两段。总长度a+b与长度较长的a之比等于a与长度较短的b之比。

两个数值构成黄金比例,如果:

一个得出数值的方法是从左边的分数式入手。经过简化和代入,

于是:

两边乘以就得到:

即是

找出该方程的正解,

黄金分割奇妙之处,在于其倒数为自身减1,即:1.618...的倒数为,并时常被称为“黄金比例共轭”[6]

从上面的得到:

这个0.618...的数值常用希腊字母表示,即:

,亦可表达为:

替代或其他形式

借由有限连分数或者斐波纳契数列的比例中看出近似于黄金比例的倒数。
借由有限连分数或者斐波纳契数列的比例中看出近似于黄金比例的倒数。

公式可以被递归扩展来获得黄金比例的连分数[7]

而它的倒数是:

平方根表示:

三角函数的特殊值表示[8]

即是:

黄金分割数高精度计算编程

#include <iostream>
#include <stdio.h>

using namespace std;

int main() {
  long b, c, d = 0, e = 0, f = 100, i = 0, j, N;
  cout << "請輸入黃金分割數位數\n";
  cin >> N;
  N = N * 3 / 2 + 6;
  long* a = new long[N + 1];
  while (i <= N) a[i++] = 1;
  for (; --i > 0;
       i == N - 6 ? printf("\r0.61") : printf("%02ld", e += (d += b / f) / f),
       e = d % f, d = b % f, i -= 2)
    for (j = i, b = 0; j; b = b / c * (j-- * 2 - 1))
      a[j] = (b += a[j] * f) % (c = j * 10);
  delete[] a;
  cin.ignore();
  cin.ignore();
  return 0;
}

[9]

例子

贵金属分割

贵金属分割即,其中正整数时为黄金分割(),时为白银分割),时为青铜分割)。用连分数可表示为

参考文献

引用

  1. ^ Summerson John, Heavenly Mansions: And Other Essays on Architecture (New York: W.W. Norton, 1963) p. 37. "And the same applies in architecture, to the rectangles representing these and other ratios (e.g. the 'golden cut'). The sole value of these ratios is that they are intellectually fruitful and suggest the rhythms of modular design."
  2. ^ Livio, Mario. The Golden Ratio: The Story of Phi, The World's Most Astonishing Number. New York: Broadway Books. 2002. ISBN 0-7679-0815-5. 
  3. ^ Piotr Sadowski. The knight on his quest: symbolic patterns of transition in Sir Gawain and the Green Knight. University of Delaware Press. 1996: 124. ISBN 978-0-87413-580-0. 
  4. ^ Richard A Dunlap, The Golden Ratio and Fibonacci Numbers, World Scientific Publishing, 1997
  5. ^ Strogatz, Steven. Me, Myself, and Math: Proportion Control. New York Times. 2012-09-24. 
  6. ^ 埃里克·韦斯坦因. Golden Ratio Conjugate. MathWorld. 
  7. ^ Max. Hailperin; Barbara K. Kaiser; Karl W. Knight. Concrete Abstractions: An Introduction to Computer Science Using Scheme. Brooks/Cole Pub. Co. 1998. ISBN 0-534-95211-9. 
  8. ^ Brian Roselle, "Golden Mean Series"
  9. ^ "黄金分割数高精度计算.pdf"[永久失效链接]

来源

延伸读物

  • Doczi, György. The Power of Limits: Proportional Harmonies in Nature, Art, and Architecture. Boston: Shambhala Publications. 2005 [1981]. ISBN 1-59030-259-1. 
  • Huntley, H. E. The Divine Proportion: A Study in Mathematical Beauty. New York: Dover Publications. 1970. ISBN 0-486-22254-3. 
  • Joseph, George G. The Crest of the Peacock: The Non-European Roots of Mathematics New. Princeton, NJ: Princeton University Press. 2000 [1991]. ISBN 0-691-00659-8. 
  • Livio, Mario. The Golden Ratio: The Story of PHI, the World's Most Astonishing Number Hardback. NYC: Broadway (Random House). 2002 [2002]. ISBN 0-7679-0815-5. 
  • Sahlqvist, Leif. Cardinal Alignments and the Golden Section: Principles of Ancient Cosmography and Design 3rd Rev. Charleston, SC: BookSurge. 2008. ISBN 1-4196-2157-2. 
  • Schneider, Michael S. A Beginner's Guide to Constructing the Universe: The Mathematical Archetypes of Nature, Art, and Science. New York: HarperCollins. 1994. ISBN 0-06-016939-7. 
  • Scimone, Aldo. La Sezione Aurea. Storia culturale di un leitmotiv della Matematica. Palermo: Sigma Edizioni. 1997. ISBN 978-88-7231-025-0. 
  • Stakhov, A. P. The Mathematics of Harmony: From Euclid to Contemporary Mathematics and Computer Science. Singapore: World Scientific Publishing. 2009. ISBN 978-981-277-582-5. 
  • Walser, Hans. The Golden Section. Peter Hilton trans. Washington, DC: The Mathematical Association of America. 2001 [Der Goldene Schnitt 1993]. ISBN 0-88385-534-8. 

外部链接

{{bottomLinkPreText}} {{bottomLinkText}}
黄金比例
Listen to this article