微积分学中,cis函数又称纯虚数指数函数,是复变函数的一种,和三角函数类似,其可以使用正弦函数余弦函数来定义,是一种实变数复数值函数英语Complex-valued function,其中虚数单位,而cis则为cos + i sin的缩写。

cis函数示意图
一个可以代表cis函数的图形,蓝色是实数部、橘色是虚数
cis函数
性质
奇偶性 N/A
定义域 (-∞,∞)
到达域
周期
特定值
当x=0 1
当x=+∞ N/A
当x=-∞ N/A
最大值 复数无法比大小
最小值 复数无法比大小
其他性质
渐近线 N/A
N/A
临界点 N/A
拐点
不动点 0
k是一个整数.

概观

cis函数是欧拉公式等号右侧的所形的组合函数简写:

其中i表示虚数单位。因此

[1][2][3]

cis符号最早由威廉·哈密顿在他于1866出版的《Elements of Quaternions》中使用[4],而Irving Stringham在1893出版的《Uniplanar Algebra》 [5][6] 以及James Harkness和Frank Morley在1898出版的《Theory of Analytic Functions》中皆沿用了此一符号 [6][7] ,其利用欧拉公式将三角函数与复平面的指数函数连结起来。

cis函数主要的功能为简化某些数学表达式,透过cis函数可以使部分数学式能更简便地表达[4][5][8],例如傅里叶变换和哈特利变换的结合[9][10][11],以及应用在教学上时,因某些因素(如课程安排或课纲需求)因故不能使用指数来表达数学式时,cis函数就能派上用场。

性质

cis函数的定义域是整个实数集值域单位复数绝对值1复数。它是周期函数,其最小正周期为。其图像关于原点对称。

上述文字称它以类似三角函数的形式来定义函数的原因是,就如同三角函数,他也算是一种比值复数和其模的比值:

,其中辐角复数

因此,当一复数的模为1,其反函数就是辐角arg函数)。

函数可视为求单位复数的函数。

函数的实数部分和余弦函数相同。

Thumb
cis函数 定义在复数。图中,颜色代表辐角,高代表模

微分

[1][12]

积分

[1]

其他性质

根据欧拉公式,cis函数有以下性质:

[13]

上述性质是当都是复数时成立。在都是实数时,有以下不等式:

[13]

命名

由于函数的值为“余弦加上虚数单位倍的正弦”,取其英文缩写cosine and imaginary unit sine,故以来表示该函数。

欧拉公式

在数学上,为了简化欧拉公式,因此将欧拉公式以类似三角函数的形式来定义函数,给出了cis函数的定义[1][9][8][2][14][10][11][15]

并且一般定义域,值域为

值为复数时,函数仍然是有效的,因此可利用cis函数将欧拉公式推广到更复杂的版本。[16]

棣莫弗公式

在数学上,为了方便起见,可以将棣莫弗公式写成以下形式:

指数定义

跟其他三角函数类似,可以用e指数来表示,依照欧拉公式给出:

反函数

的反函数:,当代入模为1的复数时,所得的值是其辐角

类似其他三角函数,的反函数也可以用自然对数来表示

当一复数经过符号函数后代入可得辐角。

恒等式

函数的倍角公式似乎比三角函数简单许多

半形公式

倍角公式

幂简约公式

相关函数

余cis函数

Thumb
cocis函数,正好跟cis上下颠倒,周期相同,但是位移了

就如同三角函数,我们可以令:,其可用于诱导公式来化简某些特定的函数的式子。

至于指数定义,经过正弦和余弦的指数定义得:

有恒等式:

双曲cis函数

cish函数()在几何意义上与cis函数对应的双曲函数不同。在双曲几何中,与欧几里得几何对应cis函数应为:

然而当中的若定义为负一的平方根,则其会变为[17]

双曲复数

在一般的情况下,cis函数对应的双曲函数定义域值域皆为实数,但若定义双曲复数,考虑数,其中实数,而量不是实数,但是实数。选取,得到一般复数。取的话,便得到双曲复数。

双曲复数有对应的欧拉公式:

其中j为双曲复数

因此双曲cis函数得到的值为双曲复数,相反的若将其反函数带入模为一的双曲复数可得其辐角

如此一来,值域将会变成分裂四元数

cas函数

cas函数是一个以类似cis函数的概念定义的一个函数,为雷夫·赫特利英语Ralph Hartley于1942提出,其定义为,是一种实变数实值函数,而cas为“cosine-and-sine”的缩写,其表示了实数值的赫特利变换英语Hartley transform[18][19]

cas函数存在一些恒等式:

角和公式:

微分:

参见

参考文献

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.