热门问题
时间线
聊天
视角
最短路问题
来自维基百科,自由的百科全书
Remove ads
最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。算法具体的形式包括:
- 确定起点的最短路径问题 - 也叫单源最短路问题,即已知起始结点,求最短路径的问题。在边权非负时适合使用Dijkstra算法,若边权为负时则适合使用Bellman-ford算法或者SPFA算法。
- 确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。
- 确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径。
- 全局最短路径问题 - 也叫多源最短路问题,求图中所有的最短路径。适合使用Floyd-Warshall算法。
![]() |

用于解决最短路径问题的算法被称做“最短路径算法”,有时被简称作“路径算法”。最常用的路径算法有:
- Dijkstra算法
- A*算法
- Bellman-Ford算法
- SPFA算法(Bellman-Ford算法的改进版本)
- Floyd-Warshall算法
- Johnson最短路算法
- 双向搜索
Remove ads
单源最短路径算法
Remove ads
使用拓扑排序算法可以在有权值的DAG中以线性时间()求解单源最短路径问题。
假设边缘权重均为整数。
Remove ads
参见
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads