热门问题
时间线
聊天
视角

格尔丰德-施奈德常数

来自维基百科,自由的百科全书

Remove ads

格尔丰德-施奈德常数即为2的次方,其值为:

事实速览 2的 2 {\displaystyle {\sqrt {2}}} 次方, 命名 ...
Remove ads

罗季翁·库兹明在1930年证明此数字是超越数[2]。 1934年苏联数学家亚历山大·格尔丰德和德国数学家西奥多·施耐德分别独立证明了更一般的格尔丰德-施奈德定理[3],因此证明格尔丰德-施奈德常数为超越数,也回答了希尔伯特第七问题

它的平方根

也是一个超越数。在无理数的无理数次方为有理数这个命题中,它可用来提供一个经典、简捷的证明。

Remove ads

无理数的无理数次方为有理数

尽管已知 是超越数,自然也就会是无理数。但在不知道它是无理数的情况下,仍可以证明此事。

命题:存在 a, b 是无理数,使得 为有理数。

证明:

已知是无理数,考虑 ,它有可能是有理数,也可能是无理数。

  • 是有理数,即得证。
  • 是无理数,则

为有理数,得证。

Remove ads

希尔伯特第七问题

希尔伯特的第七个问题是要证明(或找出反例),如果a是一个不等于0或1的代数数,b是一个无理代数数,则ab总是超越数。他给出了两个例子,其中一个就是

1919年,他发表了一个关于数论的演讲,谈到了三个猜想:黎曼猜想费马大定理的超越性。他对观众说,在你们还活着的时候肯定没人证明这三个猜想。[4]但这个数的超越性在1934年得出证明[5],当时希尔伯特还活着。

Remove ads

参见

参考文献

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads