热门问题
时间线
聊天
视角

砷化氢

来自维基百科,自由的百科全书

砷化氫
Remove ads

砷化氢,是最简单的砷化合物,化学式为AsH3,可燃、能自燃。它是的高毒性分子衍生物。尽管它毒性很强,在半导体工业中仍广泛使用,也可用于合成各种有机砷化合物[1]

事实速览 砷化氢, 识别 ...
Remove ads

标准状态下,AsH3是一种无色,密度高于空气,可溶于(200 mL/L)及多种有机溶剂的气体。它本身无臭,但空气中有大约0.5ppm的胂存在时,它便可被空气氧化产生轻微类似大蒜的气味。常温下胂很稳定,分解成的速度非常慢,但温度高于230°C时,它便迅速分解。还有几个因素也会影响胂分解的速度,其中包括湿度的存在以及催化剂()的存在。[1]

AsH3分子呈键角H-As-H为91.8°的三角锥体,且三条As-H键长度相等,为1.519 Å还可以指分子式为AsH3-xRx的有机砷化合物,其中 R 可以是芳基烷基。例如三苯胂(As(C6H5)3)是胂的一种。

Remove ads

发现

AsH3在1775年由卡尔·威廉·舍勒发现。他通过反应所生成的游离态还原三氧化二砷来制备砷化氢。这个化学反应马氏试砷法的前奏。

合成

AsH3通常通过含+3价As的物质及含-1价H的物质反应制取。[2][3]

4AsCl3 + 3NaBH4 → 4AsH3 + 3NaCl + 3BCl3

亦可通过-3价As与质子试剂的化学反应来制备此气体

Zn3As2 + 6H+ → 2AsH3 + 3Zn2+

化学反应

AsH3的化学性质介于PH3SbH3之间。

热分解

与一些较重的氢化物一样(例如SbH3H2TeSnH4),AsH3不稳定(动力学上较稳定,但热力学上不稳定)。

2AsH3 → 3H2 + 2As

分解反应是马氏试砷法的基础(见下文)。

氧化作用

仍以SbH3作比较,AsH3易被O2或空气氧化:

2AsH3 + 3O2 → As2O3 + 3H2O

砷化氢与强氧化剂(例如高锰酸钾次氯酸钠硝酸等)剧烈反应。[1]

制备金属衍生物

砷化氢是制备纯净或接近纯净的砷的金属复合物的原料。例如属于二锰系列的[(C5H5)Mn(CO)2]2AsH,其中核心Mn2AsH是平面的。[4]

古特蔡特测砷法

古特蔡特测砷法(Gutzeit test)是一个利用AsH3与Ag+的化学反应来测试砷的特有方法。[5] 虽然此测试在分析化学中已不再使用,但仍可以以下的反应作为一个例子来解释AsH3在“软”金属阳离子中的吸引力。在古特蔡特测砷法中,含水的砷化合物(一般是亚砷酸盐)被和H2SO4还原便会生成AsH3。此气体将逸出并通入AgNO3溶液或粉末状的AgNO3中。固体AgNO3与AsH3反应生成黄色的Ag4AsNO3,而 AsH3与AgNO3溶液反应则生成黄色的Ag颗粒溶胶,不稳定。

酸-碱反应

As-H键有酸性,可被去质子化。这个性质经常被利用:

AsH3 + NaNH2 → NaAsH2 + NH3

AsH3与三烷基铝发生相应的反应时,会生成三聚物[R2AlAsH2]3,当中的R=(CH3)3C。[6] 此反应与利用AsH3制备GaAs的反应机理有关,见下。

一般认为AsH3是非碱性的,但可被超酸质子化,生成四面体形离子[AsH4]+[7]

与卤化物的反应

砷化氢与卤素)或它们的化合物(例如:三氯化氮)的化学反应非常危险,可导致爆炸。 [1]

生成联胂的反应

虽然H2As-AsH2及H2As-As(H)-AsH2可被探测到,但与PH3不同,AsH3很难形成稳定的链。联胂在-100°C以上不稳定。

微电子学中的应用

AsH3可用于合成与微电子学及固态激光有关的半导体材料。与相似,的n-掺染物。[1] 更重要的用途是以AsH3为原料,在700-900°C通过化学气相沉积来制造半导体材料砷化镓(GaAs):

Ga(CH3)3 + AsH3 → GaAs + 3CH4

于化学战的应用

早在第二次世界大战前,AsH3就已计划用于化学战。由于该气体无色,几乎无臭,且密度是空气的2.5倍,因此非常适合在化学战中用作覆盖效应搜索。其致命浓度远低于能闻到蒜头气味的浓度。尽管如此,与光气相比它非常易燃且效果较低,因此从未正式用作武器。另一方面,有几种基于砷化氢的有机化合物,例如:路易斯毒气(氯乙烯氯胂)、亚当毒气(二苯胺氯胂)、克拉克一号毒气(二苯胺氯胂)、克拉克二号毒气(二苯氰化胂)等则曾用于化学战中。[8]

司法科学及马氏试砷法

AsH3司法科学中亦非常著名,因为它可用于砷中毒的探测。旧的(但特别敏感的)马氏试砷法样品中含砷时便会释放出砷化氢。[3] 此方法大约在1836年由詹姆士·马西发明。它是基于受害者身体(通常在胃部)的含砷样本与无砷及稀硫酸的反应:如样本含砷,气态砷化氢便会生成。其后气体通过玻璃管,在250-300°C的温度下分解。若装置中加热部分有砷镜生成,便表明砷的存在。而若装置的清凉部分有黑镜沉淀物生成,则表明的存在。

十九世纪末至二十世初,马氏试砷法曾广泛使用,但现在被更多经过改善的、更复杂的技术取代,例如:用于司法领域的中子活化分析

毒性

关于其他砷化合物的毒性,另见三氧化二砷砷中毒[7]

砷化氢的毒性与其他砷化合物的毒性非常不同。虽然曾有记录因皮肤接触而中毒,但主要途径还是吸入后中毒。砷化氢使红血球中的血红素凝固,使它易被身体破坏。

吸入砷化氢的第一症状是头痛晕眩反胃,需数小时后才能感觉到。其后,症状有溶血性贫血(高水平的非结合胆红素)、血红素尿肾病。在最严重的情况下,对肾脏的伤害可持续很长时间。

吸入250ppm的砷化氢便会迅速死亡,而曝露在30ppm的砷化氢中30分钟亦可致命。长期曝露于10ppm的砷化氢也可致命。曝露于0.5ppm的砷化氢后会出现中毒症状。虽然可以合理地假设砷化氢与其他砷化合物有共通点,长期曝露可导致砷中毒,但目前只有少量关于砷化氢的慢性毒性的资料。

参见

参考文献

外部链接

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads