热门问题
时间线
聊天
视角

MNIST数据库

来自维基百科,自由的百科全书

MNIST数据库
Remove ads

MNIST数据库(源自“National Institute of Standards and Technology database”[1] )是一个通常用于训练各种数码图像处理系统的大型数据库[2][3]。该数据库通过对来自NIST原始数据库的样本进行修改创建,涵盖手写数字的图像,共包含60,000张训练图像和10,000张测试图像,尺寸为28×28像素。该数据库广泛运用于机器学习领域的训练与测试当中[4][5]。MNIST在其发布时使用支持向量机的错误率为0.8%,但一些研究后来通过使用深度学习技术显著改进了这一成绩。

Thumb
来自MNIST测试数据库的示例图像

历史

MNIST数据库通过“重混”(re-mixing)的来自NIST原始数据库的样本创建[6]。创建者认为,由于NIST的训练数据来自美国人口普查局的员工,而测试数据取自美国高中学生,这样的数据集不适合用来进行研究[7]。此外,NIST的黑白图像被归一化英语Normalization (image processing)处理,以适应28×28像素的边界框,并进行了抗锯齿英语Spatial anti-aliasing处理,从而引入了灰度级别[7]

MNIST数据库包含有60,000张训练图像与10,000张测试图像[8]。训练集的一半和测试集的一半来自NIST的训练数据集,而训练集的另一半和测试集的另一半则来自NIST的测试数据集[9]。数据库的原始创建者保留了一些在其上测试的算法方法的列表[7]。在他们的原始论文中,他们使用支持向量机获得了0.8%的错误率[10]。然而,原始的MNIST数据库含有至少4个错误标签[11]

扩展MNIST(EMNIST)是由NIST开发和发布的一个更新的数据集,作为MNIST的(最终)继任者[12][13]。MNIST仅包含手写数字的图像,而EMNIST包括NIST特别数据库19中的所有图像,该数据库包含大量的手写大写和小写字母以及数字的图像[14][15]

Remove ads

表现

一些研究通过使用人工神经网络在MNIST数据库中获取了“接近人类的表现”[16]。原始数据库官方网站上列出的最高错误率为12%,这是使用简单线性分类器且没有预处理时的成绩[10][7]

在2004年,研究人员使用一种名为“LIRA”的基于罗森布拉特感知器原理的三层神经分类器,在数据库上实现了0.42%的最佳错误率[17]

一些研究者使用随机失真的MNIST数据库对人工智慧系统进行测试。这些系统通常是人工神经网络系统,所使用的失真方式可能是仿射失真弹性失真英语Elastic deformation[7]。在某些情况下,这些系统可以非常成功;其中一个系统在数据库上实现了0.39%的错误率[18]

2011年,研究人员报告使用类似的神经网络系统,实现了0.27%的错误率,提升了之前的最佳成绩[19]。2013年,一种基于DropConnect正则化神经网络的方法声称实现了0.21%的错误率[20]。2016年,单个卷积神经网络在MNIST上的最佳性能为0.25%的错误率[21]。截至2018年8月,使用MNIST训练数据、没有数据增强的单个卷积神经网络的最佳性能为0.25%的错误率[21][22]。此外,乌克兰赫梅尔尼茨基的并行计算中心(Parallel Computing Center)使用了仅5个卷积神经网络的集成,在MNIST数据库上表现为0.21%的错误率[23][24]

Remove ads

参见

参考来源

延伸阅读

外部链接

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads