mài(英语:Meitnerium),是一种人工合成化学元素,其化学符号Mt原子序数为109。是一种放射性极强的超重元素锕系后元素,其所有同位素半衰期都很短,非常不稳定,其中寿命最长的是278Mt,半衰期仅约4.5秒。9族最重的元素,但由于没有足够稳定的同位素,因此目前未能通过化学实验来验证的性质是否符合元素周期律

Quick Facts 概况, 名称·符号·序数 ...
109Mt
氢(非金属) 氦(惰性气体)
锂(碱金属) 铍(碱土金属) 硼(类金属) 碳(非金属) 氮(非金属) 氧(非金属) 氟(卤素) 氖(惰性气体)
钠(碱金属) 镁(碱土金属) 铝(贫金属) 硅(类金属) 磷(非金属) 硫(非金属) 氯(卤素) 氩(惰性气体)
钾(碱金属) 钙(碱土金属) 钪(过渡金属) 钛(过渡金属) 钒(过渡金属) 铬(过渡金属) 锰(过渡金属) 铁(过渡金属) 钴(过渡金属) 镍(过渡金属) 铜(过渡金属) 锌(过渡金属) 镓(贫金属) 锗(类金属) 砷(类金属) 硒(非金属) 溴(卤素) 氪(惰性气体)
铷(碱金属) 锶(碱土金属) 钇(过渡金属) 锆(过渡金属) 铌(过渡金属) 钼(过渡金属) 锝(过渡金属) 钌(过渡金属) 铑(过渡金属) 钯(过渡金属) 银(过渡金属) 镉(过渡金属) 铟(贫金属) 锡(贫金属) 锑(类金属) 碲(类金属) 碘(卤素) 氙(惰性气体)
铯(碱金属) 钡(碱土金属) 镧(镧系元素) 铈(镧系元素) 镨(镧系元素) 钕(镧系元素) 钷(镧系元素) 钐(镧系元素) 铕(镧系元素) 钆(镧系元素) 铽(镧系元素) 镝(镧系元素) 钬(镧系元素) 铒(镧系元素) 铥(镧系元素) 镱(镧系元素) 镥(镧系元素) 铪(过渡金属) 钽(过渡金属) 钨(过渡金属) 铼(过渡金属) 锇(过渡金属) 铱(过渡金属) 铂(过渡金属) 金(过渡金属) 汞(过渡金属) 铊(贫金属) 铅(贫金属) 铋(贫金属) 钋(贫金属) 砹(类金属) 氡(惰性气体)
钫(碱金属) 镭(碱土金属) 锕(锕系元素) 钍(锕系元素) 镤(锕系元素) 铀(锕系元素) 镎(锕系元素) 钚(锕系元素) 镅(锕系元素) 锔(锕系元素) 锫(锕系元素) 锎(锕系元素) 锿(锕系元素) 镄(锕系元素) 钔(锕系元素) 锘(锕系元素) 铹(锕系元素) 𬬻(过渡金属) 𬭊(过渡金属) 𬭳(过渡金属) 𬭛(过渡金属) 𬭶(过渡金属) (预测为过渡金属) 𫟼(预测为过渡金属) 𬬭(预测为过渡金属) (过渡金属) (预测为贫金属) 𫓧(贫金属) 镆(预测为贫金属) 𫟷(预测为贫金属) 鿬(预测为卤素) 鿫(预测为惰性气体)




(Upe)
𬭶𫟼
概况
名称·符号·序数(Meitnerium)·Mt·109
元素类别未知
可能为过渡金属[1][2]
·周期·9·7·d
标准原子质量[278]
电子排布[Rn] 5f14 6d7 7s2
(计算值)[1][3]
2, 8, 18, 32, 32, 15, 2
(预测)
<span class="inline-unihan" style="border-bottom: 1px dotted; font-variant: normal;cursor: help; font-family: sans-serif, &#039;FZSongS-Extended&#039;, &#039;FZSongS-Extended(SIP)&#039;, &#039;WenQuanYi Zen Hei Mono&#039;, &#039;BabelStone Han&#039;, &#039;HanaMinB&#039;, &#039;FZSong-Extended&#039;, &#039;Arial Unicode MS&#039;, Code2002, DFSongStd, &#039;STHeiti SC&#039;, unifont, SimSun-ExtB, TH-Tshyn-P0, TH-Tshyn-P1, TH-Tshyn-P2, Jigmo3, Jigmo2, Jigmo, ZhongHuaSongPlane15, ZhongHuaSongPlane02, ZhongHuaSongPlane00, &#039;Plangothic P1&#039;, &#039;Plangothic P2&#039;;" title="字符描述:⿰钅麦 &#10;※如果您看到空白、方块或问号,代表您的系统无法显示该字符。">鿏</span>的电子层(2, 8, 18, 32, 32, 15, 2 (预测))
的电子层(2, 8, 18, 32, 32, 15, 2
(预测))
历史
发现重离子研究所(1982年)
物理性质
物态固体(预测)[2]
密度(接近室温
37.4(预测)[1] g·cm−3
原子性质
氧化态9, 8, 6, 4, 3, 1(预测)[1][4][5]
电离能第一:800.8(估值)[1] kJ·mol−1

第二:1823.6(估值)[1] kJ·mol−1
第三:2904.2(估值)[1] kJ·mol−1

更多
原子半径122(预测)[1] pm
共价半径129(估值)[6] pm
杂项
晶体结构面心立方 (预测)[2]
磁序顺磁性(预测)[7]
CAS号54038-01-6
同位素
主条目:的同位素
同位素 丰度 半衰期t1/2 衰变
方式 能量MeV 产物
274Mt 人造 0.64 [9] α 9.76[8] 270Bh
276Mt 人造 0.62 [9] α 9.71[8] 272Bh
278Mt[10] 人造 4.5  α 9.38-9.55 274Bh
Close

德国达姆施塔特重离子研究所的研究团队在1982年首次合成出元素。其名称得自奥地利瑞典原子物理学家莉泽·迈特纳

概论

Quick Facts 外部视频链接 ...
外部视频链接
video icon 基于澳大利亚国立大学的计算,核聚变未成功的可视化[11]
Close

超重元素的合成

Thumb
核聚变反应的图示。两个原子核融合成一个,并发射出一个中子。在这一刻,这个反应和用来创造新元素的反应是相似的,唯一可能的区别是它有时会释放几个中子,或者根本不释放中子。

超重元素[a]原子核是在两个不同大小的原子核[b]的聚变中产生的。粗略地说,两个原子核的质量之差越大,两者就越有可能发生反应。[17]由较重原子核组成的物质会作为靶子,被较轻原子核的粒子束轰击。两个原子核只能在距离足够近的时候,才能聚变成一个原子核。原子核都带正电荷,会因为静电排斥力而相互排斥,所以只有两个原子核的距离足够短时,强核力才能克服这个排斥力并发生聚变。粒子束因此被粒子加速器大大加速,以使这种排斥力与粒子束的速度相比变得微不足道。[18]施加到粒子束上以加速它们的能量可以使它们的速度达到光速的十分之一。但是,如果施加太多能量,粒子束可能会分崩离析。[18]

不过,只是靠得足够近不足以使两个原子核聚变:当两个原子核逼近彼此时,它们通常会融为一体约10−20秒,之后再分开(分开后的原子核不需要和先前相撞的原子核相同),而非形成单一的原子核。[18][19]这是因为在尝试形成单个原子核的过程中,静电排斥力会撕开正在形成的原子核。[18]每一对目标和粒子束的特征在于其截面,即两个原子核彼此接近时发生聚变的概率。[c]这种聚变是量子效应的结果,其中原子核可通过量子穿隧效应克服静电排斥力。如果两个原子核可以在该阶段之后保持靠近,则多个核相互作用会导致能量的重新分配和平衡。[18]

两个原子核聚变产生的原子核处于非常不稳定,[18]被称为复合原子核英语compound nucleus激发态[21]复合原子核为了达到更稳定的状态,可能会直接裂变[22]或是放出一些中子来带走激发能量。如果激发能量太小,无法放出中子,复合原子核就会放出γ射线来带走激发能量。这个过程会在原子核碰撞后的10−16秒发生,并创造出更稳定的原子核。[22]原子核只有在10−14秒内不衰变IUPAC/IUPAP联合工作小组才会认为它是化学元素。这个值大约是原子核得到它的外层电子,显示其化学性质所需的时间。[23][d]

衰变和探测

粒子束穿过目标后,会到达下一个腔室——分离室。如果反应产生了新的原子核,它就会存在于这个粒子束中。[25]在分离室中,新的原子核会从其它核素(原本的粒子束和其它反应产物)中分离,[e]到达半导体探测器英语Semiconductor detector后停止。这时标记撞击探测器的确切位置、能量和到达时间。[25]这个转移需要10−6秒的时间,因此原子核需要存在这么长的时间才能被检测到。[28]若衰变发生,衰变的原子核被再次记录,并测量位置、衰变能量和衰变时间。[25]

原子核的稳定性源自于强核力,但强核力的作用距离很短,随着原子核越来越大,强核力对最外层的核子质子和中子)的影响减弱。同时,原子核会被质子之间,范围不受限制的静电排斥力撕裂。[29]强核力提供的核结合能以线性增长,而静电排斥力则以原子序数的平方增长。后者增长更快,对重元素和超重元素而言变得越来越重要。[30][31]超重元素理论预测[32]及实际观测到[33]的主要衰变方式,即α衰变自发裂变都是这种排斥引起的。[f]几乎所有会α衰变的核素都有超过210个核子,[35]而主要通过自发裂变衰变的最轻核素有238个核子。[33]有限位势垒在这两种衰变方式中抑制了原子核衰变,但原子核可以隧穿这个势垒,发生衰变。[30][31]

Thumb
基于在杜布纳联合原子核研究所中设置的杜布纳充气反冲分离器,用于产生超重元素的装置方案。在检测器和光束聚焦装置内的轨迹会因为前者的磁偶极英语Magnetic dipole和后者的四极磁体英语Quadrupole magnet而改变。[36]

放射性衰变中常产生α粒子是因为α粒子中的核子平均质量足够小,足以使α粒子有多余能量离开原子核。[37]自发裂变则是由静电排斥力将原子核撕裂而致,会产生各种不同的产物。[31]随着原子序数增加,自发裂变迅速变得重要:自发裂变的部分半衰期从92号元素到102号元素下降了23个数量级,[38]从90号元素到100号元素下降了30个数量级。[39]早期的液滴模型因此表明有约280个核子的原子核的裂变势垒英语Fission barrier会消失,因此自发裂变会立即发生。[31][40]之后的核壳层模型表明有大约300个核子的原子核将形成一个稳定岛,其中的原子核不易发生自发裂变,而是会发生半衰期更长的α衰变。[31][40]随后的发现表明预测存在的稳定岛可能比原先预期的更远,还发现长寿命锕系元素和稳定岛之间的原子核发生变形,获得额外的稳定性。[41]对较轻的超重核素[42]以及那些更接近稳定岛的核素[38]的实验发现它们比先前预期的更难发生自发裂变,表明核壳层效应变得重要。[g]

α衰变由发射出去的α粒子记录,在原子核衰变之前就能确定衰变产物。如果α衰变或连续的α衰变产生了已知的原子核,则可以很容易地确定反应的原始产物。[h]因为连续的α衰变都会在同一个地方发生,所以通过确定衰变发生的位置,可以确定衰变彼此相关。[25]已知的原子核可以通过它经历的衰变的特定特征来识别,例如衰变能量(或更具体地说,发射粒子的动能)。[i]然而,自发裂变会产生各种分裂产物,因此无法从其分裂产物确定原始核素。[j]

尝试合成超重元素的物理学家可以获得的信息是探测器收集到的信息,即原子核到达探测器的位置、能量、时间以及它衰变的信息。他们分析这些数据并试图得出结论,确认它确实是由新元素引起的。如果提供的数据不足以得出创造出来的核素确实是新元素的结论,且对观察到的现象没有其它解释,就可能在解释数据时出现错误。[k]

历史

发现

此元素在1982年8月29日由彼得·安布鲁斯特哥特佛莱德·明岑贝格英语Gottfried Münzenberg领导的研究团队所合成出来,此团队位于德国黑森邦达姆施塔特重离子研究所[53] 他们利用-58离子轰击-209合成了266Mt的单一原子:

命名

根据IUPAC元素系统命名法的旧称是Unnilennium,来自1、0、9的拉丁语写法。

1997年8月27日IUPAC正式对国际上分歧较大的101至109号元素的重新英文定名中,Meitnerium正式作为109号元素的命名,以纪念奥地利瑞典原子物理学家莉泽·迈特纳(Lise Meitner)。[54]

全国科学技术名词化学名词审定委员会据此于1998年7月8日重新审定、公布101至109号元素的中文命名,其中首次给出109号元素中文名:“”(mài,音同“麦”)[55][56][57]

未来实验

日本理化学研究所的一个团队已表示有计划研究以下反应:

同位素与核特性

More information 同位素, 半衰期[l] ...
的同位素列表
同位素 半衰期[l] 衰变方式 发现年份 发现方法
数值 来源
266Mt 2.0 ms [33] α, SF 1982年 209Bi(58Fe,n)
268Mt 23 ms [33] α 1994年 272Rg(—,α)
270Mt 800 ms [33] α 2004年 278Nh(—,2α)
274Mt 640 ms [9] α 2006年 282Nh(—,2α)
275Mt 20 ms [9] α 2003年 287Mc(—,3α)
276Mt 620 ms [9] α 2003年 288Mc(—,3α)
277Mt 5 ms [58] SF 2012年 293Ts(—,4α)
278Mt 4.5 s [58] α 2010年 294Ts(—,4α)
282Mt[m] 1.1 min [59] α 1998年 290Fl(ee2α)
Close

目前已知的同位素共有8个,质量数分别为266、268、270和274-278,全部都具有极高的放射性半衰期极短,非常不稳定,且质量数越大的同位素稳定性越高,其中最长寿的同位素为-278,半衰期约4.5秒,也是目前发现最重的同位素。未经确认的同位素-282可能具有更长的半衰期,为67秒。除了-278外,其他寿命较长的同位素有-276和-274,半衰期分别为0.45秒和0.44秒,剩下5种同位素的半衰期都在20毫秒以下。大多数同位素主要发生α衰变,有些则会进行自发裂变[60]

-268和-270具有已知但未经证实的同核异构体[60]

化学属性

推算的化学属性

物理特性

根据周期表的趋势,应该是一种高密度金属,密度大约为37.4 g/cm3[1]:8.9,:12.5,:22.5),熔点也很高,约为2600至2900°C(钴:1480,铑:1966,铱:2454)。它的耐腐蚀性可能很高,甚至比铱更高。

氧化态

预计将是6d系过渡金属的第7个元素,也是周期表中9族最重的成员,位于的下面。较重的两个9族元素氧化态为+6,而铱最稳定的为+4和+3态,铑则呈稳定的+3态。因此预期会形成稳定的+3状态,但也可能有稳定的+4和+6态。

化学特性

应可形成六氟化物MtF6。这氟化物预计将较六氟化铱更加稳定,因为同族元素从上到下的+6氧化态越来越稳定。

在与氧发生反应时,铑主要形成Rh2O3 ,而铱会被氧化为+4态的IrO2。因此可能会形成二氧化物MtO2

9族元素的+3态常见于与卤素直接反应所形成的三卤化物(氟化物除外)。因此应可形成MtCl3、MtBr3和MtI3

注释

参考资料

参考书目

外部链接

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.