热门问题
时间线
聊天
视角

代數連通度

来自维基百科,自由的百科全书

代数连通度
Remove ads

代數連通度(algebraic connectivity)是拉普拉斯矩陣的第二小的特徵值(重特徵值要重複計算)。[1]這個特徵值大於0若且唯若連通圖。這是一個簡單的推論,因為拉普拉斯矩陣的特徵值0的重數就是圖的連通分支的個數。這個值的大小反映了整個圖的連通程度。它可以用於分析網絡的穩定性與可同步性。

Thumb
一個例圖,6頂點,直徑3,連通度1,代數連通度0.722。

性質

的代數連通度大於0若且唯若是連通圖。而且,圖的代數連通度的值不大於(頂點)連通度。[2]設一個連通圖有頂點且直徑為,則代數連通度的一個下界是[3]而且根據Brendan McKay的一個結果這個下界可以改進為[4]對於上圖中的例子,

不像傳統的連通度,代數連通度除了與頂點的連接方式有關以外,還與頂點的個數有關。對隨機圖,代數連通度隨頂點數增大而減小,隨平均度的增大而增大。[5]

代數連通度的具體定義依賴於所使用的拉普拉斯矩陣的類型。金芳蓉使用一種重新標度的拉普拉斯矩陣,消除了對頂點數的依賴,所以上下界有所不同。[6]

拉普拉斯矩陣自然地出現在網絡上的同步模型中,例如藏本模型,因而代數連通度標誌了網絡達到同步的容易程度。[7]也可以使用其他度量,例如平均距離(特徵路徑長度),[8]實際上代數連通度與平均距離(的倒數)密切相關。[4]

Remove ads

Fiedler向量

代數連通度的相關理論最早由Miroslav Fiedler提出。[9][10]為了紀念他,與代數連通度對應的特徵向量命名為Fiedler向量。Fieldler向量可用於圖的劃分。

用Fiedler向量對圖進行劃分

以首段中的圖為例,Fiedler向量為(0.415, 0.309, 0.069, -0.221, 0.221, -0.794)。負值對應連通程度很差的點6,及其相鄰的節點4;而正值對應其他頂點。因此可以根據Fiedler向量中的符號把圖分成兩部分:{1, 2, 3, 5}與{4, 6}。另外,值0.069非常接近0,可以單獨成為一類,這樣就把圖分成三部分:{1, 2, 5}, {3}, {4, 6}。

另見

參考資料

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads