热门问题
时间线
聊天
视角

佩爾方程

来自维基百科,自由的百科全书

佩尔方程
Remove ads

若一個丟番圖方程具有以下的形式:

Thumb
佩爾方程的動畫

正整數,則稱此二元二次不定方程為佩爾方程(英文:Pell's equation;德文:Pellsche Gleichung),以英國數學家約翰·佩爾英語John Pell (mathematician)命名。

完全平方數,則這個方程式只有平凡(實際上對任意的都是解)。對於其餘情況,拉格朗日證明了佩爾方程總有非平凡解。而這些解可由連分數求出。

Remove ads

佩爾方程的解

的連分數表示:的漸近分數列,由連分數理論知存在使得(pi,qi)為佩爾方程的解。取其中最小的,將對應的 (pi,qi)稱為佩爾方程的基本解,或最小解,記作(x1,y1),則所有的解(xi,yi)可表示成如下形式:

或者由以下的遞迴關係式得到:

Remove ads

例子

標準型

首先根據根號7的漸進連分數表示,找出前幾項,察看(分子,分母)是否是一組解。

第一項:不是解;
第二項:不是解;
第三項:不是解;
第四項:是解。於是最小解是(8,3)。計算的各次乘方,或者用遞推公式(不能直接得出某一項)就可以得到接下來的各組解
(x,y)=(8,3)、 (127,48)、 (2024,765)、 (32257,12192)、 (514088,194307)、 (8193151,3096720)、 (130576328,49353213) ......
Remove ads

非標準型

  • 對於方程,利用婆羅摩笈多-斐波那契恆等式找出方程解。

例如有解(3,1)。

時,有

(r,s)=(8,3)、 (127,48)、 (2024,765)、 (32257,12192)、 (514088,194307)、 (8193151,3096720)、 (130576328,49353213) ......

(x,y)=(3,1)、 (45,17)、 (717,271)、 (11427,4319)、 (182115,68833)、 (2902413,1097009)、 (46256493,17483311) ......

  • 對於方程,兩邊乘上a,求出的解。

例如有解(1,1)。

時,有

(r,s)=(19,6)、 (721,228)、 (27379,8658)、 (1039681,328776)、 (39480499,12484830) ......

(z,y)=(5,1)、 (35,11)、 (155,49)、 (1325,419)、 (5885,1861)、 (50315,15911)、 (223475,70669) ......

(x,y)=(1,1)、 (7,11)、 (31,49)、 (265,419)、 (1177,1861)、 (10063,15911)、 (44695,70669) ......

Remove ads

與代數數論的聯繫

佩爾方程與代數數理論有緊密聯繫,因為公式給出了環(即二次域)上的範數。因此(x,y)是佩爾方程的解當且僅的範數是一,即是域上的一個單元。根據狄利克雷單位定理的所有單元都可以表示為同一個基本單元的乘方形式。這就是說一個佩爾方程的所有的解都是一個基本解的乘方。單元總可以通過解一個類似佩爾方程而得到,但這時的基本解並不一定就是基本單元。

Remove ads

與切比雪夫多項式的聯繫

佩爾方程切比雪夫多項式有內在的聯繫:若Ti (x)和Ui (x)分別是第一類和第二類切比雪夫多項式的相應項,那麼它們是佩爾形式方程的解。於是第一類和第二類切比雪夫多項式可以通過展開基本解的乘方得到。

進一步有:如果(xi,yi)是佩爾方程的第i個解,那麼

xi = Ti (x1)
yi = y1Ui - 1(x1)。
Remove ads

佩爾方程的最小解

更多資訊 n, x ...
Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads