設 是 上的完整二元關係(entire binary relation),那麼此處的策略是定義一棵 上有限序列的樹 ,而這棵樹的鄰近元素滿足 這關係。在這種狀況下, 的其中一個分支是鄰近元素滿足 這關係的無限序列。我們先從定義「若對於 而言, ,則 」開始,由於 是完整二元關係之故,因此 是一棵具有 層且剪枝過的樹,因此 有 這分支,因此對於所有的 而言, ,而這蘊含了 ,因此 為真。
設 是一棵位於 上具有 層的剪枝過的樹,那麼此處的策略是定義 上的二元關係 ,而這關係使得 導出 這樣的序列,而在這序列中, 且 是一個嚴格遞增函數;而在這種狀況下,無窮序列 是一個分支。(要證明這點,只需要對 進行證明)我們先定義「若 是 的始序列(initial subsequence),且 且 ,則 」開始,由於 是一棵具有 層的剪枝過的樹枝故,所以 是個完整關係;因此 蘊含說存在有無限序列 使得 ,因此對於一些 而言, 。設 的最終元素,那麼 。對於所有的 而言 這序列屬於 。由於這是 的的始序列,或者是一個 之故,因此 是一個分支。
|