热门问题
时间线
聊天
视角
內切球
几何概念 来自维基百科,自由的百科全书
Remove ads
內切球是幾何學中的概念。如果三維空間中的一個多面體內部的某個球和這個多面體的每一個面都相切,就稱這個球為多面體的內切球。這時稱這個多面體為球外切多面體。內切球的球心被稱為多面體的內心。
此條目沒有列出任何參考或來源。 (2024年11月5日) |

內切球是多面體中所能容納的最大球。並非所有的多面體都有內切球。正多面體和四面體都有內切球。
四面體的內切球
任意四面體都有唯一的內切球。四面體內切球的球心經過任何兩個面所成的二面角的平分面。如果已知四面體ABCD每個面的面積:、、、,以及四面體的體積,則內切球的半徑可以表示為:
Remove ads
參見
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads