Remove ads差頻(英文:beat note或beat frequency)一詞源於聲學上兩個頻率相近但不同的聲波的干涉,所得到的干涉訊號的頻率是原先兩個聲波的頻率之差的絕對值,因此叫做差頻。這個概念也用到了光學和電子學中,指兩個頻率不同的訊號進行合波後得到頻率為兩者之差的新訊號。[1] 以兩擁有相同振幅、無相位差,但頻率略有差異之正弦波為例 y 1 = R sin ( k 1 x − ω 1 t ) {\displaystyle y_{\mathrm {1} }=R\sin(k_{\mathrm {1} }x-\omega _{\mathrm {1} }t)} y 2 = R sin ( k 2 x − ω 2 t ) {\displaystyle y_{\mathrm {2} }=R\sin(k_{\mathrm {2} }x-\omega _{\mathrm {2} }t)} 且因為頻率只是略有差異,在此假設 k 1 ≑ k 2 ≑ k {\displaystyle k_{\mathrm {1} }\doteqdot k_{\mathrm {2} }\doteqdot k} ω 1 ≑ ω 2 ≑ ω {\displaystyle \omega _{\mathrm {1} }\doteqdot \omega _{\mathrm {2} }\doteqdot \omega } 令 y = y 1 + y 2 {\displaystyle y=y_{\mathrm {1} }+y_{\mathrm {2} }} y = 2 R sin ( k 1 + k 2 2 x − ω 1 + ω 2 2 t ) cos ( k 1 − k 2 2 x − ω 1 − ω 2 2 t ) {\displaystyle y=2R\sin({\frac {k_{\mathrm {1} }+k_{\mathrm {2} }}{2}}x-{\frac {\omega _{\mathrm {1} }+\omega _{\mathrm {2} }}{2}}t)\cos({\frac {k_{\mathrm {1} }-k_{\mathrm {2} }}{2}}x-{\frac {\omega _{\mathrm {1} }-\omega _{\mathrm {2} }}{2}}t)} 在此又令: k ′ = k 1 − k 2 2 = Δ k 2 {\displaystyle k'={\frac {k_{\mathrm {1} }-k_{\mathrm {2} }}{2}}={\frac {\Delta k}{2}}} ω ′ = ω 1 − ω 2 2 = Δ ω 2 {\displaystyle \omega '={\frac {\omega _{\mathrm {1} }-\omega _{\mathrm {2} }}{2}}={\frac {\Delta \omega }{2}}} 故y可以改寫成 y = 2 R sin ( k x − ω t ) cos ( k ′ x − ω ′ t ) {\displaystyle y=2R\sin(kx-\omega t)\cos(k'x-\omega 't)} Remove ads註釋Loading content...延伸閱讀Loading content...外部連結Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads