热门问题
时间线
聊天
视角

正扭歪無限面體

来自维基百科,自由的百科全书

Remove ads

幾何學中,正扭歪[1][2]無限面體(英語:Regular skew apeirohedron),又稱扭歪正多面體(日語:ねじれ正多面体[註 1]是一種頂點並非全部共面的正無限面體,即每個面都全等、每個角也相等的扭歪無限面體。通常扭歪無限面體會具有正扭歪的面或扭歪的頂點圖

歷史

關於考克斯特,1926年時,約翰·弗林德斯·皮特里將扭歪多邊形非平面多邊形)的概念推廣到四維空間扭歪多面體三維空間的扭歪無限面體。

考克斯特找到了三種形式,他們具有平的面和扭歪的頂點圖,兩者彼此互補。它們都可以用施萊夫利符號的擴展符號{l,m|n}來表示。這個擴展符號{l,m|n}表示每個頂點都是個正邊形的公共頂點,且存在正邊形的空洞。

若一扭歪無限面體是一個正扭歪無限面體,則其施萊夫利符號存在下列等式:

  • 2 sin(π/l) · sin(π/m) = cos(π/n)
Remove ads

三維空間的正扭歪無限面體

三維空間中有三種扭歪無限面體,分別為四角六片四角孔扭歪無限面體六角四片四角孔扭歪無限面體六角六片三角孔扭歪無限面體約翰·康威將他們稱為多立方體(英語:Mucube)、多八面體(英語:Muoctahedron)和、多四面體(英語:Mutetrahedron),英文中的字首mu-表示「多」(英語:multiple)的意思,其意義分別代表「很多立方體」、「很多八面體」以及「很多四面體」[3]

  1. 四角六片四角孔扭歪無限面體(多立方體、英語:Mucube):{4,6|4}:每個頂點都是六個正方形的公共頂點
  2. 六角四片四角孔扭歪無限面體(多八面體、英語:Muoctahedron):{6,4|4}:每個頂點都是四個六邊形的公共頂點
  3. 六角六片三角孔扭歪無限面體(多四面體、英語:Mutetrahedron):{6,6|3}:每個頂點都是六個六邊形的公共頂點

考克斯特給予這些 {2q,2r|p} 形式的扭歪無限面體與抽象群 (2q,2r|2,p) 同構的[[(p,q,p,r)]+的手徵對稱性。與之相關的堆砌就具有[[(p,q,p,r)]]的擴展對稱性[4]

更多資訊 考克斯特群 對稱性, 無限面體 {p,q|l} ...
Remove ads

三維雙曲空間的正扭歪無限面體

1967年時,C. W. L. Garner以類似於在歐式三維空間尋找正扭歪無限面體的方式,發現了31種雙曲空間中具有扭歪多邊形頂點圖的正扭歪無限面體[5]

14種緊空間正扭歪無限面體

更多資訊 考克斯特群, 無限面體 {p,q|l} ...
Remove ads

17種仿緊空間正扭歪無限面體

更多資訊 考克斯特群, 無限面體 {p,q|l} ...
Remove ads

參見

註釋

參考文獻

外部連結

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads